Gordon Erlinda M, Ravicz Joshua R, Liu Seiya, Chawla Sant P, Hall Frederick L
Cancer Center of Southern California/Sarcoma Oncology Center, Santa Monica, CA 90403, USA.
Aveni Foundation, Santa Monica, CA 90405, USA.
Mol Clin Oncol. 2018 Aug;9(2):115-134. doi: 10.3892/mco.2018.1657. Epub 2018 Jun 14.
Basic research in genetics, biochemistry and cell biology has identified the executive enzymes and protein kinase activities that regulate the cell division cycle of all eukaryotic organisms, thereby elucidating the importance of site-specific protein phosphorylation events that govern cell cycle progression. Research in cancer genomics and virology has provided meaningful links to mammalian checkpoint control elements with the characterization of growth-promoting proto-oncogenes encoding c-Myc, Mdm2, cyclins A, D1 and G1, and opposing tumor suppressor proteins, such as p53, pRb, p16 and p21, which are commonly dysregulated in cancer. While progress has been made in identifying numerous enzymes and molecular interactions associated with cell cycle checkpoint control, the marked complexity, particularly the functional redundancy, of these cell cycle control enzymes in mammalian systems, presents a major challenge in discerning an optimal locus for therapeutic intervention in the clinical management of cancer. Recent advances in genetic engineering, functional genomics and clinical oncology converged in identifying cyclin G1 (CCNG1 gene) as a pivotal component of a commanding cyclin G1/Mdm2/p53 axis and a strategic locus for re-establishing cell cycle control by means of therapeutic gene transfer. The purpose of the present study is to provide a focused review of cycle checkpoint control as a practicum for clinical oncologists with an interest in applied molecular medicine. The aim is to present a unifying model that: i) clarifies the function of cyclin G1 in establishing proliferative competence, overriding p53 checkpoints and advancing cell cycle progression; ii) is supported by studies of inhibitory microRNAs linking CCNG1 expression to the mechanisms of carcinogenesis and viral subversion; and iii) provides a mechanistic basis for understanding the broad-spectrum anticancer activity and single-agent efficacy observed with dominant-negative cyclin G1, whose cytocidal mechanism of action triggers programmed cell death. Clinically, the utility of companion diagnostics for cyclin G1 pathways is anticipated in the staging, prognosis and treatment of cancers, including the potential for rational combinatorial therapies.
遗传学、生物化学和细胞生物学领域的基础研究已经确定了调控所有真核生物细胞分裂周期的执行酶和蛋白激酶活性,从而阐明了控制细胞周期进程的位点特异性蛋白质磷酸化事件的重要性。癌症基因组学和病毒学方面的研究已将哺乳动物检查点控制元件与生长促进原癌基因(编码c-Myc、Mdm2、细胞周期蛋白A、D1和G1)以及拮抗肿瘤抑制蛋白(如p53、pRb、p16和p21,它们在癌症中通常失调)的特征建立了有意义的联系。虽然在识别与细胞周期检查点控制相关的众多酶和分子相互作用方面已取得进展,但这些细胞周期控制酶在哺乳动物系统中的显著复杂性,尤其是功能冗余性,给在癌症临床管理中辨别治疗干预的最佳位点带来了重大挑战。基因工程、功能基因组学和临床肿瘤学的最新进展共同确定细胞周期蛋白G1(CCNG1基因)是一个关键的细胞周期蛋白G1/Mdm2/p53轴的关键组成部分,也是通过治疗性基因转移重新建立细胞周期控制的一个战略位点。本研究的目的是为对应用分子医学感兴趣的临床肿瘤学家提供一个关于细胞周期检查点控制的重点综述,作为一个实践案例。目的是提出一个统一模型,该模型:i)阐明细胞周期蛋白G1在建立增殖能力、超越p53检查点和推进细胞周期进程中的功能;ii)得到将CCNG1表达与致癌作用和病毒颠覆机制联系起来的抑制性微小RNA研究的支持;iii)为理解显性负性细胞周期蛋白G1所观察到的广谱抗癌活性和单药疗效提供一个机制基础,其细胞杀伤作用机制触发程序性细胞死亡。在临床上,预计细胞周期蛋白G1途径的伴随诊断在癌症的分期、预后和治疗中具有实用性,包括合理联合治疗的潜力。