Suppr超能文献

使用一种基于微计算机断层扫描数据的创新方法对人类皮质管进行三维几何量化。

A three-dimensional geometric quantification of human cortical canals using an innovative method with micro-computed tomographic data.

作者信息

Roothaer X, Delille R, Morvan H, Bennani B, Markiewicz E, Fontaine C

机构信息

Univ. Valenciennes, CNRS, UMR 8201, LAMIH, F-59313 Valenciennes, France.

Univ. Valenciennes, CNRS, UMR 8201, LAMIH, F-59313 Valenciennes, France.

出版信息

Micron. 2018 Nov;114:62-71. doi: 10.1016/j.micron.2018.07.006. Epub 2018 Jul 25.

Abstract

The complex architecture of bone has been investigated for several decades. Some pioneer works proved an existing link between microstructure and external mechanical loading applied on bone. Due to sinuous network of canals and limitations of experimental acquisition technique, there has been little quantitative analysis of three-dimensional description of cortical network. The aim of this study is to provide an algorithmic process, using Python 3.5, in order to identify 3D geometrical characteristics of voids considered as canals. This script is based on micro-computed tomographic slices of two bone samples harvested from the humerus and femur of male cadaveric subject. Slice images are obtained from 2.94 μm isotropic resolution. This study provides a generic method of image processing which considers beam hardening artefact so as to avoid heuristic choice of global threshold value. The novelty of this work is the quantification of numerous three-dimensional canals features, such as orientation or canal length, but also connectivity features, such as opening angle, and the accurate definition of canals as voids which ranges from connectivity to possibly another intersection. The script was applied to one humeral and one femoral samples in order to analyse the difference in architecture between bearing and non-bearing cortical bones. This preliminary study reveals that the femoral specimen is more porous than the humeral one whereas the canal network is denser and more connected.

摘要

几十年来,人们一直在研究骨骼的复杂结构。一些开创性的研究证实了微观结构与施加在骨骼上的外部机械负荷之间存在联系。由于骨管网络蜿蜒曲折,以及实验采集技术的局限性,对皮质网络的三维描述几乎没有进行定量分析。本研究的目的是提供一个使用Python 3.5的算法流程,以识别被视为骨管的孔隙的三维几何特征。该脚本基于从男性尸体的肱骨和股骨采集的两个骨样本的显微计算机断层扫描切片。切片图像的各向同性分辨率为2.94μm。本研究提供了一种通用的图像处理方法,该方法考虑了束硬化伪影,从而避免了全局阈值的启发式选择。这项工作的新颖之处在于对众多三维骨管特征的量化,如方向或骨管长度,还有连通性特征,如开口角度,以及将骨管准确地定义为从连通性到可能的另一个交叉点的孔隙。该脚本应用于一个肱骨样本和一个股骨样本,以分析承重皮质骨和非承重皮质骨之间的结构差异。这项初步研究表明,股骨样本比肱骨样本孔隙更多,而骨管网络更密集且连接性更强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验