Suppr超能文献

利用深度神经网络从智能手机加速度计估算车辆行驶方向。

Estimating Vehicle Movement Direction from Smartphone Accelerometers Using Deep Neural Networks.

机构信息

Grupo de Aplicaciones de Procesado de Señales (GAPS), Universidad Politécnica de Madrid, 28040 Madrid, Spain.

出版信息

Sensors (Basel). 2018 Aug 10;18(8):2624. doi: 10.3390/s18082624.

Abstract

Characterization of driving maneuvers or driving styles through motion sensors has become a field of great interest. Before now, this characterization used to be carried out with signals coming from extra equipment installed inside the vehicle, such as On-Board Diagnostic (OBD) devices or sensors in pedals. Nowadays, with the evolution and scope of smartphones, these have become the devices for recording mobile signals in many driving characterization applications. Normally multiple available sensors are used, such as accelerometers, gyroscopes, magnetometers or the Global Positioning System (GPS). However, using sensors such as GPS increase significantly battery consumption and, additionally, many current phones do not include gyroscopes. Therefore, we propose the characterization of driving style through only the use of smartphone accelerometers. We propose a deep neural network (DNN) architecture that combines convolutional and recurrent networks to estimate the vehicle movement direction (VMD), which is the forward movement directional vector captured in a phone's coordinates. Once VMD is obtained, multiple applications such as characterizing driving styles or detecting dangerous events can be developed. In the development of the proposed DNN architecture, two different methods are compared. The first one is based on the detection and classification of significant acceleration driving forces, while the second one relies on longitudinal and transversal signals derived from the raw accelerometers. The final success rate of VMD estimation for the best method is of 90.07%.

摘要

通过运动传感器对驾驶行为或驾驶风格进行特征描述已成为一个备受关注的领域。在此之前,这种特征描述通常是通过安装在车内的额外设备(如车载诊断 (OBD) 设备或踏板传感器)发出的信号来实现的。如今,随着智能手机的发展和普及,这些设备已经成为许多驾驶特征描述应用中记录移动信号的首选。通常会使用多个可用的传感器,如加速度计、陀螺仪、磁力计或全球定位系统 (GPS)。然而,使用 GPS 等传感器会显著增加电池消耗,此外,许多当前的手机并不包含陀螺仪。因此,我们提出仅使用智能手机加速度计来描述驾驶风格。我们提出了一种深度神经网络 (DNN) 架构,该架构结合了卷积和循环网络来估计车辆运动方向 (VMD),这是在手机坐标系中捕获的向前运动方向向量。一旦获得 VMD,就可以开发出多种应用,如描述驾驶风格或检测危险事件。在提出的 DNN 架构的开发中,比较了两种不同的方法。第一种方法基于对显著加速度驱动力的检测和分类,而第二种方法则依赖于从原始加速度计得出的纵向和横向信号。最佳方法的 VMD 估计最终成功率为 90.07%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65cd/6111255/86492e85aa88/sensors-18-02624-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验