Suppr超能文献

载金纳米粒脂质体阿霉素的合成与表征。

Synthesis and characterisation of liposomal doxorubicin with loaded gold nanoparticles.

机构信息

Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.

Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.

出版信息

IET Nanobiotechnol. 2018 Sep;12(6):846-849. doi: 10.1049/iet-nbt.2017.0321.

Abstract

Developing nanostructures for cancer treatment is growing significantly. Liposomal doxorubicin is a drug that is used in the clinic and represents a lot of benefits over doxorubicin. The development of multifunctional liposomes with different cancer treatment capability enables broader applications of doxorubicin chemotherapy. Many efforts were carried to prepare more effective liposomal formulation through loading gold nanoparticles (GNPs) in the formulation. Here, GNPs with an average size of 6 nm were loaded in liposomal formulation alongside doxorubicin. The hydrodynamic diameter of final formulation was 177.3 ± 33.9 nm that in comparison with liposomes without GNPs (112.5 ± 10.3 nm), GNPs-loaded liposomes showed the bigger hydrodynamic diameter. GNPs-loaded liposomes are slightly positively charged (4.4 ± 1.1 mV), while liposomes without loading the GNPs were negatively charged (-18.5 ± 1.6 mV). Doxorubicin was loaded in this formulation through active loading technique. Doxorubicin loading efficiency in gold-loaded liposomes is slightly lesser than liposomes without GNPs, but still considerably high in comparison to passive loading techniques.

摘要

用于癌症治疗的纳米结构的发展正在迅速发展。阿霉素脂质体是一种在临床上使用的药物,与阿霉素相比具有许多优势。通过在制剂中加载金纳米颗粒 (GNPs),开发具有不同癌症治疗能力的多功能脂质体使阿霉素化疗的应用更加广泛。许多努力都被用来通过制备更有效的脂质体制剂来加载金纳米粒子 (GNPs)。在这里,平均粒径为 6nm 的 GNPs 与阿霉素一起加载在脂质体制剂中。最终制剂的水动力直径为 177.3±33.9nm,与没有 GNPs 的脂质体 (112.5±10.3nm) 相比,GNPs 负载的脂质体显示出更大的水动力直径。GNPs 负载的脂质体带轻微正电荷 (4.4±1.1mV),而未加载 GNPs 的脂质体带负电荷 (-18.5±1.6mV)。阿霉素通过主动加载技术加载到该制剂中。金负载脂质体中的阿霉素载药效率略低于没有 GNPs 的脂质体,但与被动载药技术相比仍然相当高。

相似文献

10
PK/PD model for liposomal chemophototherapy.脂质体化学光动力疗法的药代动力学/药效学模型
J Control Release. 2019 Mar 10;297:102. doi: 10.1016/j.jconrel.2019.02.022.

引用本文的文献

2
Biogenic metallic nanoparticles: from green synthesis to clinical translation.生物成因金属纳米颗粒:从绿色合成到临床转化。
Naunyn Schmiedebergs Arch Pharmacol. 2024 Nov;397(11):8603-8631. doi: 10.1007/s00210-024-03236-y. Epub 2024 Jun 27.
7
Hybrid Nanosystems for Biomedical Applications.用于生物医学应用的杂化纳米系统。
ACS Nano. 2021 Feb 23;15(2):2099-2142. doi: 10.1021/acsnano.0c09382. Epub 2021 Jan 26.
9
Metal nanoparticles synthesis through natural phenolic acids.通过天然酚酸合成金属纳米粒子。
IET Nanobiotechnol. 2019 Oct;13(8):771-777. doi: 10.1049/iet-nbt.2018.5386.

本文引用的文献

5
Self-Assembled Smart Nanocarriers for Targeted Drug Delivery.自组装智能纳米载体用于靶向药物递送。
Adv Mater. 2016 Feb 10;28(6):1302-11. doi: 10.1002/adma.201502479. Epub 2015 Oct 5.
10
Gold nanoparticle mediated cancer immunotherapy.金纳米颗粒介导的癌症免疫疗法。
Nanomedicine. 2014 Apr;10(3):503-14. doi: 10.1016/j.nano.2013.09.011. Epub 2013 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验