Suppr超能文献

砷化镓磷传感器在检测六氟化硫分解气体中的高灵敏度和高选择性。

High Sensitivity and Selectivity of AsP Sensor in Detecting SF Decomposition Gases.

作者信息

Jin Wang, Guofeng Yang, Junjun Xue, Jianming Lei, Qing Cai, Dunjun Chen, Hai Lu, Rong Zhang, Youdou Zheng

机构信息

Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China.

School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Jiangnan University, Wuxi, 214122, China.

出版信息

Sci Rep. 2018 Aug 13;8(1):12011. doi: 10.1038/s41598-018-30643-y.

Abstract

The sensing properties of monolayer arsenic phosphorus (AsP) for the adsorption of SF, HO, O, and SF decomposition gases (SO and HS) are theoretically investigated by the first-principle calculations. We calculate the adsorption energy, equilibrium distance, Mulliken charge transfer, and electron localization function (ELF) to explore whether AsP is suitable for detecting SF decomposition gases. By comparing the adsorption performance of SF, HO, O, and HS gases, we have revealed that the SO gas molecules could form stable chemisorption with AsP monolayer. The results demonstrate that AsP is highly sensitive and selective to SO gas molecules with robust adsorption energy and apparent charge transfer. Furthermore, the current-voltage (I-V) curves reveal that only the adsorption of SO can largely modify the resistance of AsP. Our results show that gas sensors based on AsP monolayer could be better than that of black phosphorene (BP) to diagnose the state of online gas-insulated switchgear (GIS).

摘要

通过第一性原理计算从理论上研究了单层砷化磷(AsP)对SF₆、H₂O、O₂以及SF₆分解气体(SO₂和H₂S)吸附的传感特性。我们计算了吸附能、平衡距离、穆利肯电荷转移和电子定位函数(ELF),以探究AsP是否适合检测SF₆分解气体。通过比较SF₆、H₂O、O₂和H₂S气体的吸附性能,我们发现SO₂气体分子能与AsP单层形成稳定的化学吸附。结果表明,AsP对SO₂气体分子具有高灵敏度和选择性,具有强大的吸附能和明显的电荷转移。此外,电流-电压(I-V)曲线表明,只有SO₂的吸附能在很大程度上改变AsP的电阻。我们的结果表明,基于AsP单层的气体传感器在诊断在线气体绝缘开关设备(GIS)状态方面可能优于黑磷(BP)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abcc/6089960/39070436353e/41598_2018_30643_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验