Fraser Matthew W, Gleeson Deirdre B, Grierson Pauline F, Laverock Bonnie, Kendrick Gary A
School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.
Oceans Institute, The University of Western Australia, Crawley, WA, Australia.
Front Microbiol. 2018 Jul 30;9:1703. doi: 10.3389/fmicb.2018.01703. eCollection 2018.
Sediment microorganisms can have profound influence on productivity and functioning of marine ecosystems through their critical roles in regulating biogeochemical processes. However, the identity of sediment microorganisms that mediate organic matter turnover and nutrient cycling in seagrass sediments is only poorly understood. Here, we used metagenomic sequencing to investigate shifts in the structure and functioning of the microbial community of seagrass sediments across a salinity and phosphorus (P) availability gradient in Shark Bay, WA, Australia. This iconic ecosystem is oligotrophic and hypersaline with abundant seagrass meadows that directly contribute Shark Bay's status as a World Heritage Site. We show that sediment phosphonate metabolism genes as well as enzyme activities increase in hypersaline conditions with lower soluble reactive phosphate in the water column. Given that sediment organic P content is also highest where P concentrations in the water column are low, we suggest that microbial processing of organic P can contribute to the P requirements of seagrasses at particularly oligotrophic sites. Seagrass meadows are often highly productive in oligotrophic waters, and our findings suggest that an increase in the functional capacity of microbial communities in seagrass sediments to break down organic P may contribute to the high productivity of seagrass meadows under oligotrophic conditions. When compared to soil and sediment metagenomes from other aquatic and terrestrial ecosystems, we also show microbial communities in seagrass sediments have a disproportionately high abundance of putative phosphorus and sulfur metabolism genes, which may have played an important evolutionary role in allowing these angiosperms to recolonize the marine environment and prosper under oligotrophic conditions.
沉积物微生物在调节生物地球化学过程中发挥着关键作用,从而对海洋生态系统的生产力和功能产生深远影响。然而,对于介导海草沉积物中有机物周转和养分循环的沉积物微生物的特性,我们却知之甚少。在此,我们利用宏基因组测序技术,研究了澳大利亚西澳大利亚州鲨鱼湾盐度和磷(P)有效性梯度下海草沉积物微生物群落的结构和功能变化。这个标志性的生态系统营养贫瘠且盐度高,拥有丰富的海草草甸,这直接促成了鲨鱼湾成为世界遗产地。我们发现,在盐度较高且水柱中可溶性活性磷酸盐含量较低的条件下,沉积物中的膦酸盐代谢基因以及酶活性会增加。鉴于水柱中P浓度较低时沉积物有机P含量也最高,我们认为,在特别贫营养的地点,微生物对有机P的处理有助于满足海草对P的需求。海草草甸在贫营养水域中通常具有很高的生产力,我们的研究结果表明,海草沉积物中微生物群落分解有机P的功能能力增强,可能有助于海草草甸在贫营养条件下实现高产。与来自其他水生和陆地生态系统的土壤和沉积物宏基因组相比,我们还发现海草沉积物中的微生物群落中,假定的磷和硫代谢基因的丰度异常高,这可能在使这些被子植物重新定殖于海洋环境并在贫营养条件下繁荣发展的过程中发挥了重要的进化作用。