Suppr超能文献

沉积物缺氧限制了变暖条件下微生物驱动的海草碳再矿化。

Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions.

作者信息

Trevathan-Tackett Stacey M, Seymour Justin R, Nielsen Daniel A, Macreadie Peter I, Jeffries Thomas C, Sanderman Jonathan, Baldock Jeff, Howes Johanna M, Steven Andrew D L, Ralph Peter J

机构信息

Climate Change Cluster, University of Technology Sydney, NSW 2007, Australia.

School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, VIC 3125, Australia.

出版信息

FEMS Microbiol Ecol. 2017 Jun 1;93(6). doi: 10.1093/femsec/fix033.

Abstract

Seagrass ecosystems are significant carbon sinks, and their resident microbial communities ultimately determine the quantity and quality of carbon sequestered. However, environmental perturbations have been predicted to affect microbial-driven seagrass decomposition and subsequent carbon sequestration. Utilizing techniques including 16S-rDNA sequencing, solid-state NMR and microsensor profiling, we tested the hypothesis that elevated seawater temperatures and eutrophication enhance the microbial decomposition of seagrass leaf detritus and rhizome/root tissues. Nutrient additions had a negligible effect on seagrass decomposition, indicating an absence of nutrient limitation. Elevated temperatures caused a 19% higher biomass loss for aerobically decaying leaf detritus, coinciding with changes in bacterial community structure and enhanced lignocellulose degradation. Although, community shifts and lignocellulose degradation were also observed for rhizome/root decomposition, anaerobic decay was unaffected by temperature. These observations suggest that oxygen availability constrains the stimulatory effects of temperature increases on bacterial carbon remineralization, possibly through differential temperature effects on bacterial functional groups, including putative aerobic heterotrophs (e.g. Erythrobacteraceae, Hyphomicrobiaceae) and sulfate reducers (e.g. Desulfobacteraceae). Consequently, under elevated seawater temperatures, carbon accumulation rates may diminish due to higher remineralization rates at the sediment surface. Nonetheless, the anoxic conditions ubiquitous to seagrass sediments can provide a degree of carbon protection under warming seawater temperatures.

摘要

海草生态系统是重要的碳汇,其栖息的微生物群落最终决定了碳固存的数量和质量。然而,据预测环境扰动会影响微生物驱动的海草分解及随后的碳固存。利用16S - rDNA测序、固态核磁共振和微传感器分析等技术,我们检验了以下假设:海水温度升高和富营养化会增强海草叶片碎屑及根茎/根组织的微生物分解。添加营养物质对海草分解的影响可忽略不计,表明不存在营养限制。温度升高导致需氧分解的叶片碎屑生物量损失增加19%,这与细菌群落结构的变化以及木质纤维素降解增强相吻合。尽管在根茎/根分解过程中也观察到了群落变化和木质纤维素降解,但厌氧分解不受温度影响。这些观察结果表明,氧气的可利用性可能通过温度对包括假定的需氧异养菌(如红杆菌科、生丝微菌科)和硫酸盐还原菌(如脱硫杆菌科)在内的细菌功能群的不同影响,限制了温度升高对细菌碳再矿化的刺激作用。因此,在海水温度升高的情况下,由于沉积物表面再矿化速率较高,碳积累速率可能会降低。尽管如此,海草沉积物普遍存在的缺氧条件在海水温度升高时可提供一定程度的碳保护。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验