Suppr超能文献

磁共振成像重建中卷积核的形状:矩形与椭圆。

On the shape of convolution kernels in MRI reconstruction: Rectangles versus ellipsoids.

机构信息

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA.

出版信息

Magn Reson Med. 2022 Jun;87(6):2989-2996. doi: 10.1002/mrm.29189. Epub 2022 Feb 24.

Abstract

PURPOSE

Many MRI reconstruction methods (including GRAPPA, SPIRiT, ESPIRiT, LORAKS, and convolutional neural network [CNN] methods) involve shift-invariant convolution models. Rectangular convolution kernel shapes are often chosen by default, although ellipsoidal kernel shapes have potentially appealing theoretical characteristics. In this work, we systematically investigate the differences between different kernel shape choices in several contexts.

THEORY

It is well-understood that a rectangular region of k-space is associated with anisotropic spatial resolution, while ellipsoidal regions can be associated with more isotropic resolution. Further, for a fixed spatial resolution, ellipsoidal kernels are associated with substantially fewer parameters than rectangular kernels. These characteristics suggest that ellipsoidal kernels may have certain advantages over rectangular kernels.

METHODS

We used real retrospectively undersampled k-space data to empirically study the characteristics of rectangular and ellipsoidal kernels in the context of seven methods (GRAPPA, SPIRiT, ESPIRiT, SAKE, LORAKS, AC-LORAKS, and CNN-based reconstructions).

RESULTS

Empirical results suggest that both kernel shapes can produce reconstructed images with similar error metrics, although the ellipsoidal shape can often achieve this with reduced computation time and memory usage and/or fewer model parameters.

CONCLUSION

Ellipsoidal kernel shapes may offer advantages over rectangular kernel shapes in various MRI applications.

摘要

目的

许多 MRI 重建方法(包括 GRAPPA、SPIRiT、ESPIRiT、LORAKS 和卷积神经网络[CNN]方法)都涉及平移不变卷积模型。默认情况下,通常选择矩形卷积核形状,尽管椭圆核形状具有潜在吸引人的理论特性。在这项工作中,我们系统地研究了在几种情况下不同核形状选择之间的差异。

理论

众所周知,矩形 k 空间区域与各向异性空间分辨率相关,而椭圆区域可以与更各向同性的分辨率相关。此外,对于固定的空间分辨率,与矩形核相比,椭圆核的参数要少得多。这些特性表明,椭圆核可能比矩形核具有某些优势。

方法

我们使用真实的回顾性欠采样 k 空间数据,从经验上研究了七种方法(GRAPPA、SPIRiT、ESPIRiT、SAKE、LORAKS、AC-LORAKS 和基于 CNN 的重建)中矩形核和椭圆核的特性。

结果

经验结果表明,两种核形状都可以生成具有相似误差度量的重建图像,尽管椭圆形状通常可以通过减少计算时间和内存使用以及/或更少的模型参数来实现。

结论

在各种 MRI 应用中,椭圆核形状可能比矩形核形状具有优势。

相似文献

1
On the shape of convolution kernels in MRI reconstruction: Rectangles versus ellipsoids.
Magn Reson Med. 2022 Jun;87(6):2989-2996. doi: 10.1002/mrm.29189. Epub 2022 Feb 24.
4
Improving GRAPPA reconstruction using joint nonlinear kernel mapped and phase conjugated virtual coils.
Phys Med Biol. 2019 Jul 18;64(14):14NT01. doi: 10.1088/1361-6560/ab274d.
6
A learnable Gabor Convolution kernel for vessel segmentation.
Comput Biol Med. 2023 May;158:106892. doi: 10.1016/j.compbiomed.2023.106892. Epub 2023 Apr 3.
9
P-LORAKS: Low-rank modeling of local k-space neighborhoods with parallel imaging data.
Magn Reson Med. 2016 Apr;75(4):1499-514. doi: 10.1002/mrm.25717. Epub 2015 May 7.
10
Synthesizing images from multiple kernels using a deep convolutional neural network.
Med Phys. 2020 Feb;47(2):422-430. doi: 10.1002/mp.13918. Epub 2019 Dec 29.

引用本文的文献

1
New Theory and Faster Computations for Subspace-Based Sensitivity Map Estimation in Multichannel MRI.
IEEE Trans Med Imaging. 2024 Jan;43(1):286-296. doi: 10.1109/TMI.2023.3297851. Epub 2024 Jan 2.
2
On Ambiguity in Linear Inverse Problems: Entrywise Bounds on Nearly Data-Consistent Solutions and Entrywise Condition Numbers.
IEEE Trans Signal Process. 2023;71:1083-1092. doi: 10.1109/tsp.2023.3257989. Epub 2023 Mar 16.

本文引用的文献

1
Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues.
IEEE Signal Process Mag. 2020 Jan;37(1):128-140. doi: 10.1109/MSP.2019.2950640. Epub 2020 Jan 20.
2
Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet Neural Networks.
IEEE Signal Process Mag. 2020 Jan;37(1):141-151. doi: 10.1109/MSP.2019.2950557. Epub 2020 Jan 20.
3
Linear Predictability in MRI Reconstruction: Leveraging Shift-Invariant Fourier Structure for Faster and Better Imaging.
IEEE Signal Process Mag. 2020 Jan;37(1):69-82. doi: 10.1109/msp.2019.2949570. Epub 2020 Jan 17.
4
Compressed Sensing: From Research to Clinical Practice with Deep Neural Networks.
IEEE Signal Process Mag. 2020 Jan;37(1):111-127. doi: 10.1109/MSP.2019.2950433. Epub 2020 Jan 17.
5
Minimal Linear Networks for Magnetic Resonance Image Reconstruction.
Sci Rep. 2019 Dec 20;9(1):19527. doi: 10.1038/s41598-019-55763-x.
7
KerNL: Kernel-Based Nonlinear Approach to Parallel MRI Reconstruction.
IEEE Trans Med Imaging. 2019 Jan;38(1):312-321. doi: 10.1109/TMI.2018.2864197. Epub 2018 Aug 7.
8
Off-the-Grid Recovery of Piecewise Constant Images from Few Fourier Samples.
SIAM J Imaging Sci. 2016;9(3):1004-1041. doi: 10.1137/15M1042280. Epub 2016 Jul 21.
9
P-LORAKS: Low-rank modeling of local k-space neighborhoods with parallel imaging data.
Magn Reson Med. 2016 Apr;75(4):1499-514. doi: 10.1002/mrm.25717. Epub 2015 May 7.
10
Low-rank modeling of local k-space neighborhoods (LORAKS) for constrained MRI.
IEEE Trans Med Imaging. 2014 Mar;33(3):668-81. doi: 10.1109/TMI.2013.2293974.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验