Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA.
Magn Reson Med. 2022 Jun;87(6):2989-2996. doi: 10.1002/mrm.29189. Epub 2022 Feb 24.
Many MRI reconstruction methods (including GRAPPA, SPIRiT, ESPIRiT, LORAKS, and convolutional neural network [CNN] methods) involve shift-invariant convolution models. Rectangular convolution kernel shapes are often chosen by default, although ellipsoidal kernel shapes have potentially appealing theoretical characteristics. In this work, we systematically investigate the differences between different kernel shape choices in several contexts.
It is well-understood that a rectangular region of k-space is associated with anisotropic spatial resolution, while ellipsoidal regions can be associated with more isotropic resolution. Further, for a fixed spatial resolution, ellipsoidal kernels are associated with substantially fewer parameters than rectangular kernels. These characteristics suggest that ellipsoidal kernels may have certain advantages over rectangular kernels.
We used real retrospectively undersampled k-space data to empirically study the characteristics of rectangular and ellipsoidal kernels in the context of seven methods (GRAPPA, SPIRiT, ESPIRiT, SAKE, LORAKS, AC-LORAKS, and CNN-based reconstructions).
Empirical results suggest that both kernel shapes can produce reconstructed images with similar error metrics, although the ellipsoidal shape can often achieve this with reduced computation time and memory usage and/or fewer model parameters.
Ellipsoidal kernel shapes may offer advantages over rectangular kernel shapes in various MRI applications.
许多 MRI 重建方法(包括 GRAPPA、SPIRiT、ESPIRiT、LORAKS 和卷积神经网络[CNN]方法)都涉及平移不变卷积模型。默认情况下,通常选择矩形卷积核形状,尽管椭圆核形状具有潜在吸引人的理论特性。在这项工作中,我们系统地研究了在几种情况下不同核形状选择之间的差异。
众所周知,矩形 k 空间区域与各向异性空间分辨率相关,而椭圆区域可以与更各向同性的分辨率相关。此外,对于固定的空间分辨率,与矩形核相比,椭圆核的参数要少得多。这些特性表明,椭圆核可能比矩形核具有某些优势。
我们使用真实的回顾性欠采样 k 空间数据,从经验上研究了七种方法(GRAPPA、SPIRiT、ESPIRiT、SAKE、LORAKS、AC-LORAKS 和基于 CNN 的重建)中矩形核和椭圆核的特性。
经验结果表明,两种核形状都可以生成具有相似误差度量的重建图像,尽管椭圆形状通常可以通过减少计算时间和内存使用以及/或更少的模型参数来实现。
在各种 MRI 应用中,椭圆核形状可能比矩形核形状具有优势。