Suppr超能文献

个性化医学学习:从深度学习视角的全面综述。

Learning for Personalized Medicine: A Comprehensive Review From a Deep Learning Perspective.

出版信息

IEEE Rev Biomed Eng. 2019;12:194-208. doi: 10.1109/RBME.2018.2864254. Epub 2018 Aug 7.

Abstract

With the recent advancements in analyzing high-volume, complex, and unstructured data, modern learning methods are playing an increasingly critical role in the field of personalized medicine. Personalized medicine (i.e., providing tailored medical treatment to individual patients through the identification of common features, including their genetics, inheritance, and lifestyle) has attracted the attention of many researchers in recent years. This paper provides an overview of the research progress in the application of learning methods, with a focus on deep learning in personalized medicine. In particular, three domains of applications are reviewed: drug development, disease characteristic identification, and therapeutic effect prediction. The main objective of this review is to consider the applied methods in detail and to offer insights into their pros and cons. Although having demonstrated advantages in coping with data complexity and nonlinearity and in recognizing features and associating structural data, the studied learning methods are not a panacea to all medical problems. Hence, we discuss the existing research challenges and clarify future study directions.

摘要

随着分析大容量、复杂和非结构化数据的最新进展,现代学习方法在个性化医学领域发挥着越来越重要的作用。个性化医学(即通过识别常见特征,包括遗传、遗传和生活方式,为个体患者提供量身定制的医疗)近年来引起了许多研究人员的关注。本文概述了学习方法在个性化医学中的应用研究进展,重点介绍了深度学习。特别是,本文回顾了三个应用领域:药物开发、疾病特征识别和治疗效果预测。本综述的主要目的是详细考虑应用方法,并深入了解它们的优缺点。尽管在处理数据复杂性和非线性方面,以及在识别特征和关联结构数据方面表现出了优势,但所研究的学习方法并不是解决所有医学问题的灵丹妙药。因此,我们讨论了现有的研究挑战,并阐明了未来的研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验