Suppr超能文献

一个基于人工智能的平台,用于对元认知训练效果进行个性化预测。

An artificial intelligence-based platform for personalized predictions of Metacognitive Training effectiveness.

作者信息

König Caroline, Copado Pedro, Vellido Alfredo, Nebot Àngela, Angulo Cecilio, Lamarca Maria, Acuña Vanessa, Berna Fabrice, Moritz Steffen, Gawęda Łukasz, Ochoa Susana

机构信息

Soft Computing Research Group (SOCO), Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Centre, Universitat Politècnica de Catalunya (UPC Barcelona Tech), Jordi Girona 1-3, Barcelona, 08034, Spain.

Knowledge Engineerig Research Group (GREC), Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Centre, Universitat Politècnica de Catalunya (UPC Barcelona Tech), Jordi Girona 1-3, Barcelona, 08034, Spain.

出版信息

Comput Struct Biotechnol J. 2025 Aug 5;28:281-293. doi: 10.1016/j.csbj.2025.07.051. eCollection 2025.

Abstract

This study introduces a machine learning (ML)-based platform aimed at predicting the effectiveness of Metacognitive Training (MCT). The platform is meant to function as an experimental prototype in the scope of a clinical research project for a decision support system to assist clinicians in tailoring treatment plans for patients with psychosis. It integrates eight ML models to evaluate MCT effectiveness under a wide range of mental health questionnaires to assess a broad spectrum of psychological symptoms. By incorporating diverse measures, the platform aims to capture a comprehensive understanding of patient profiles, enabling more precise and tailored predictions for treatment personalization. Furthermore, the transparency requirements for artificial intelligence (AI) systems, as outlined in the AI Act regulation of the European Union, are addressed through the implementation of explainable AI models, using post-hoc explanations based on SHAP analysis for each predictive model. Ethical concerns related to ensuring gender-neutral behavior in the system are tackled by conducting a disparate impact analysis, which evaluates biases present in the models enhancing the system's accountability and alignment with ethical and regulatory standards.

摘要

本研究介绍了一个基于机器学习(ML)的平台,旨在预测元认知训练(MCT)的效果。该平台旨在作为临床研究项目范围内的实验原型,用于决策支持系统,以协助临床医生为精神病患者量身定制治疗方案。它整合了八个ML模型,在广泛的心理健康问卷下评估MCT效果,以评估广泛的心理症状。通过纳入多种测量方法,该平台旨在全面了解患者概况,从而为治疗个性化进行更精确和量身定制的预测。此外,欧盟人工智能法案规定中概述的人工智能(AI)系统的透明度要求,通过实施可解释的AI模型来解决,对每个预测模型使用基于SHAP分析的事后解释。通过进行差异影响分析来解决与确保系统中性别中立行为相关的伦理问题,该分析评估模型中存在的偏差,增强系统的问责制并使其符合伦理和监管标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8160/12358636/21b20d1be77b/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验