Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience , Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences , Suzhou 215123 , P. R. China.
Division of Nanomaterials , Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences , Nanchang 330200 , P. R. China.
ACS Appl Mater Interfaces. 2018 Sep 5;10(35):29705-29711. doi: 10.1021/acsami.8b11997. Epub 2018 Aug 24.
Extensive progress has been made in fiber-shaped asymmetric supercapacitors (FASCs) for portable and wearable electronics. However, positive and negative electrodes must be distinguished and low energy densities are a crucial challenge and thus limit their practical applications. This paper reports an efficient method to directly grow TiN nanowire arrays@VO nanosheets core-shell heterostructures on carbon nanotube fibers as nonpolarity electrodes. Benefiting from their unique heterostructure, single electrodes possess high specific capacitances of 195.1 and 230.7 F cm as positive and negative electrodes, respectively. Furthermore, all-solid-state nonpolarity FASC devices with a maximum voltage of 1.6 V were successfully fabricated. Our devices achieve an outstanding specific capacitance of 74.25 F cm and a remarkable energy density of 26.42 mW h cm. More importantly, their electrochemical performance changed negligibly regardless of whether the charge-discharge process is in positive or negative direction, indicating excellent nonpolarity. Therefore, these high-performance nonpolarity FASCs pave the way for next-generation wearable energy storage devices.
在用于便携式和可穿戴电子设备的纤维状不对称超级电容器 (FASC) 方面已经取得了广泛的进展。然而,正负极必须区分,而低能量密度是一个关键挑战,因此限制了它们的实际应用。本文报道了一种在碳纳米纤维上直接生长 TiN 纳米线阵列@VO 纳米片核壳异质结构作为非极性电极的有效方法。受益于其独特的异质结构,单个电极作为正负极分别具有 195.1 和 230.7 F cm 的高比电容。此外,成功制备了具有 1.6 V 最大电压的全固态非极性 FASC 器件。我们的器件实现了 74.25 F cm 的出色比电容和 26.42 mW h cm 的显著能量密度。更重要的是,无论充放电过程是在正极还是负极进行,它们的电化学性能变化可以忽略不计,这表明了优异的非极性。因此,这些高性能的非极性 FASC 为下一代可穿戴储能设备铺平了道路。