Reyes-Ramos Carlos A, Peregrino-Uriarte Alma B, Cota-Ruiz Keni, Valenzuela-Soto Elisa M, Leyva-Carrillo Lilia, Yepiz-Plascencia Gloria
Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Ejido La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; El Colegio de Chihuahua, Calle Partido Díaz 4723 Esquina con Anillo Envolvente del PRONAF, Ciudad Juárez, Chihuahua 32310, Mexico.
Comp Biochem Physiol B Biochem Mol Biol. 2018 Dec;226:1-9. doi: 10.1016/j.cbpb.2018.08.001. Epub 2018 Aug 11.
Hypoxic zones in marine environments are spreading around the world affecting the survival of many organisms. Marine animals have several strategies to respond to hypoxia, including the regulation of gluconeogenesis. Phosphoenolpyruvate carboxykinase (PEPCK) is a key regulatory enzyme of gluconeogenesis. The objective of this work was to study two isoforms of PEPCK, one mitochondrial (PEPKC-M) and one cytosolic (PEPCK-C), from the white shrimp Litopenaeus vannamei and the response to hypoxia. Both PEPCK isoforms are 72 kDa proteins and have 92% identity at the amino acid level. The mitochondrial isoform has a N-terminal signal peptide for mitochondrial import. Gene expression and enzymatic activity in subcellular fractions were detected in gills, hepatopancreas and muscle in normoxic and hypoxic conditions. Expression of PEPCK-C was higher than PEPCK-M in all the tissues and induced in response to hypoxia at 48 h in hepatopancreas, while the enzymatic activity of PEPCK-M was higher than PEPCK-C in gills and hepatopancreas, but not in muscle and also increased in response to hypoxia in hepatopancreas but decreased in gills and muscle. During limiting oxygen conditions, shrimp tissues obtain energy by inducing anaerobic glycolysis, and although gluconeogenesis implies energy investment, due to the need to maintain glucose homeostasis, these gluconeogenic enzymes are active with contrasting behaviors in the cytosol and mitochondrial cell compartments and appear to be up-regulated in hepatopancreas indicating this tissue pivotal role in gluconeogenesis during the response to hypoxia.
海洋环境中的缺氧区域正在全球范围内蔓延,影响着许多生物的生存。海洋动物有多种应对缺氧的策略,包括糖异生作用的调节。磷酸烯醇式丙酮酸羧激酶(PEPCK)是糖异生作用的关键调节酶。本研究的目的是研究凡纳滨对虾中PEPCK的两种同工型,一种是线粒体同工型(PEPKC-M),另一种是胞质同工型(PEPCK-C),以及它们对缺氧的反应。两种PEPCK同工型均为72 kDa的蛋白质,在氨基酸水平上具有92%的同一性。线粒体同工型具有用于线粒体导入的N端信号肽。在常氧和缺氧条件下,检测鳃、肝胰腺和肌肉中亚细胞组分中的基因表达和酶活性。在所有组织中,PEPCK-C的表达均高于PEPCK-M,并且在肝胰腺中,缺氧48小时后其表达会被诱导;而在鳃和肝胰腺中,PEPCK-M的酶活性高于PEPCK-C,但在肌肉中并非如此,并且在肝胰腺中,其酶活性对缺氧有反应而增加,但在鳃和肌肉中则降低。在氧气受限的条件下,虾组织通过诱导无氧糖酵解来获取能量,尽管糖异生作用意味着能量投入,但由于需要维持葡萄糖稳态,这些糖异生酶在细胞质和线粒体细胞区室中表现出不同的活性,并且在肝胰腺中似乎被上调,表明该组织在缺氧反应期间糖异生作用中起关键作用。