Suppr超能文献

多变量线性干预模型与随机参数相结合,以评估安全处理措施的效果:交叉口装置计划的案例研究。

Multivariate linear intervention models with random parameters to estimate the effectiveness of safety treatments: Case study of intersection device program.

机构信息

Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, Saskatoon, SK, Canada.

Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada.

出版信息

Accid Anal Prev. 2018 Nov;120:114-121. doi: 10.1016/j.aap.2018.08.007. Epub 2018 Aug 11.

Abstract

A novel intervention model that analyzes time-series crash data was recently introduced in the road safety statistical field. The model allows the computation of components related to direct and indirect treatment effects using a linearized time-series intervention model. The isolation of a component corresponding to the direct treatment effects, known as the crash modification function (CMFunction), enables the assessment of safety countermeasures over time. To gain new insights into how crash counts are influenced by covariates and to account for the fact that many components affecting crash occurrence are not easily available (unobserved heterogeneity), the linear intervention models with random parameters are implemented to evaluate the safety impacts of a specific treatment. Both matched-pair and full random parameter models were applied. In addition, the analysis was carried out in a multivariate context to account for possible correlation between dependent variables. The safety treatment selected for this study was the Intersection Safety Device (ISD) program implemented in the City of Edmonton (Alberta, Canada). The safety impacts were estimated by assessing the change in crash severity (property-damage-only vs. fatal-plus-injury) over time. Overall, the results showed a lower deviance information criterion (better goodness of fit) of the multivariate linear intervention model with random parameters compared to the univariate form with fixed parameters. The difference of the indexes of treatment effectiveness between the proposed modeling framework and the univariate model with fixed parameters was estimated up to 2.7%, which indicates the importance of accounting for unobserved heterogeneity.

摘要

最近,在道路安全统计领域引入了一种新的分析时间序列碰撞数据的干预模型。该模型允许使用线性时间序列干预模型计算与直接和间接治疗效果相关的组件。隔离与直接治疗效果相对应的组件,即碰撞修正函数(CMFunction),可以评估随时间推移的安全措施的效果。为了深入了解碰撞计数如何受到协变量的影响,并考虑到许多影响碰撞发生的因素不容易获得(未观察到的异质性),实施了具有随机参数的线性干预模型,以评估特定治疗的安全影响。分别应用了匹配对和完全随机参数模型。此外,还进行了多变量分析,以考虑因变量之间可能存在的相关性。本研究选择的安全处理是在埃德蒙顿市(加拿大阿尔伯塔省)实施的交叉口安全装置(ISD)计划。通过评估随时间推移的碰撞严重程度(仅财产损失与致命加伤害)的变化来估计安全影响。总体而言,与具有固定参数的单变量形式相比,具有随机参数的多变量线性干预模型的偏差信息准则(更好的拟合优度)更低。与具有固定参数的单变量模型相比,所提出的建模框架和固定参数单变量模型之间的治疗效果指数差异估计高达 2.7%,这表明考虑未观察到的异质性的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验