Suppr超能文献

模拟碰撞空间异质性:随机参数与地理加权

Modeling crash spatial heterogeneity: random parameter versus geographically weighting.

作者信息

Xu Pengpeng, Huang Helai

机构信息

Urban Transport Research Center, School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075, PR China.

出版信息

Accid Anal Prev. 2015 Feb;75:16-25. doi: 10.1016/j.aap.2014.10.020. Epub 2014 Nov 16.

Abstract

The widely adopted techniques for regional crash modeling include the negative binomial model (NB) and Bayesian negative binomial model with conditional autoregressive prior (CAR). The outputs from both models consist of a set of fixed global parameter estimates. However, the impacts of predicting variables on crash counts might not be stationary over space. This study intended to quantitatively investigate this spatial heterogeneity in regional safety modeling using two advanced approaches, i.e., random parameter negative binomial model (RPNB) and semi-parametric geographically weighted Poisson regression model (S-GWPR). Based on a 3-year data set from the county of Hillsborough, Florida, results revealed that (1) both RPNB and S-GWPR successfully capture the spatially varying relationship, but the two methods yield notably different sets of results; (2) the S-GWPR performs best with the highest value of Rd(2) as well as the lowest mean absolute deviance and Akaike information criterion measures. Whereas the RPNB is comparable to the CAR, in some cases, it provides less accurate predictions; (3) a moderately significant spatial correlation is found in the residuals of RPNB and NB, implying the inadequacy in accounting for the spatial correlation existed across adjacent zones. As crash data are typically collected with reference to location dimension, it is desirable to firstly make use of the geographical component to explore explicitly spatial aspects of the crash data (i.e., the spatial heterogeneity, or the spatially structured varying relationships), then is the unobserved heterogeneity by non-spatial or fuzzy techniques. The S-GWPR is proven to be more appropriate for regional crash modeling as the method outperforms the global models in capturing the spatial heterogeneity occurring in the relationship that is model, and compared with the non-spatial model, it is capable of accounting for the spatial correlation in crash data.

摘要

广泛采用的区域碰撞建模技术包括负二项式模型(NB)和具有条件自回归先验的贝叶斯负二项式模型(CAR)。这两种模型的输出都包括一组固定的全局参数估计值。然而,预测变量对碰撞次数的影响在空间上可能不是固定不变的。本研究旨在使用两种先进方法,即随机参数负二项式模型(RPNB)和半参数地理加权泊松回归模型(S-GWPR),对区域安全建模中的这种空间异质性进行定量研究。基于佛罗里达州希尔斯伯勒县的三年数据集,结果表明:(1)RPNB和S-GWPR都成功捕捉到了空间变化关系,但两种方法产生的结果集明显不同;(2)S-GWPR表现最佳,具有最高的Rd(2)值以及最低的平均绝对偏差和赤池信息准则度量。而RPNB与CAR相当,在某些情况下,它提供的预测不太准确;(3)在RPNB和NB的残差中发现了适度显著的空间相关性,这意味着在考虑相邻区域之间存在的空间相关性方面存在不足。由于碰撞数据通常是参照位置维度收集的,因此首先希望利用地理成分来明确探索碰撞数据的空间方面(即空间异质性或空间结构化的变化关系),然后再通过非空间或模糊技术处理未观察到的异质性。事实证明,S-GWPR更适合区域碰撞建模,因为该方法在捕捉模型关系中出现的空间异质性方面优于全局模型,并且与非空间模型相比,它能够考虑碰撞数据中的空间相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验