Keefer Christopher E, Chang George
Computational ADMET Group , Medicine Design , Pfizer Inc. , Groton , CT 06340 , USA . Email:
Medchemcomm. 2017 Oct 11;8(11):2067-2078. doi: 10.1039/c7md00465f. eCollection 2017 Nov 1.
Matched molecular series (MMS) analysis is an extension of matched molecular pair (MMP) analysis where all of the MMPs belong to the same chemical series. An MMS within a biological assay is able to capture specific structure activity relationships resulting from chemical substitution at a single location in the molecule. Under this convention, an MMS has the ability to capture one specific interaction vector between the compounds in a series and their therapeutic target. MMS analysis has the potential to translate the SAR from one series to another even across different protein targets or assays. A significant limitation of this approach is the lack of chemical series with a sufficient number of overlapping fragments to establish a statistically strong SAR in most databases. This results in either an inability to perform MMS analysis altogether or a potentially high proportion of spurious matches from chance correlations when the MMS compound count is low. This paper presents the novel concept of an MMS Network, which captures the SAR relationships between a set of related MMSs and significantly enhances the performance of MMS analysis by reducing the number of spurious matches leading to the identification of unexpected and potentially transferable SAR across assays. The results of a full retrospective leave-one-out analysis and randomization simulation are provided, and examples of pharmaceutically relevant programs will be presented to demonstrate the potential of this method.
匹配分子系列(MMS)分析是匹配分子对(MMP)分析的扩展,其中所有MMP都属于同一化学系列。生物测定中的MMS能够捕捉分子中单个位置化学取代所产生的特定构效关系。按照这个惯例,MMS有能力捕捉系列中化合物与其治疗靶点之间的一种特定相互作用向量。MMS分析甚至有可能将一个系列的构效关系转化到另一个系列,即使是跨越不同的蛋白质靶点或测定。这种方法的一个显著局限性是,在大多数数据库中,缺乏具有足够数量重叠片段以建立统计学上强有力的构效关系的化学系列。这导致要么完全无法进行MMS分析,要么当MMS化合物数量较少时,因偶然相关性而产生的虚假匹配比例可能很高。本文提出了MMS网络的新概念,它捕捉一组相关MMS之间的构效关系,并通过减少导致识别跨测定意外且可能可转移的构效关系的虚假匹配数量,显著提高MMS分析的性能。提供了完整的回顾性留一法分析和随机化模拟的结果,并将展示药学相关程序的示例以证明该方法的潜力。