Suppr超能文献

基于机器学习的虚拟筛选发现吲哚胺2,3-双加氧酶抑制剂

Discovery of indoleamine 2,3-dioxygenase inhibitors using machine learning based virtual screening.

作者信息

Zhang Hongao, Liu Wei, Liu Zhihong, Ju Yingchen, Xu Mengyang, Zhang Yue, Wu Xinyu, Gu Qiong, Wang Zhong, Xu Jun

机构信息

Research Center for Drug Discovery , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China . Email:

出版信息

Medchemcomm. 2018 Mar 1;9(6):937-945. doi: 10.1039/c7md00642j. eCollection 2018 Jun 1.

Abstract

Indoleamine 2,3-dioxygenase (IDO), an immune checkpoint, is a promising target for cancer immunotherapy. However, current IDO inhibitors are not approved for clinical use yet; therefore, new IDO inhibitors are still demanded. To identify new IDO inhibitors, we have built naive Bayesian (NB) and recursive partitioning (RP) models from a library of known IDO inhibitors derived from recent publications. Thirteen molecular fingerprints were used as descriptors for the models to predict IDO inhibitors. An in-house compound library was virtually screened using the best machine learning model, which resulted in 50 hits for further enzyme-based IDO inhibitory assays. Consequently, we identified three new IDO inhibitors with IC values of 1.30, 4.10, and 4.68 μM. These active compounds also showed IDO inhibitory activities in cell-based assays. The compounds belong to the tanshinone family, a typical scaffold family derived from Danshen (a Chinese herb), the dried root of , which has been widely used in China, Japan, the United States, and other European countries for the treatment of cardiovascular and cerebrovascular diseases. Thus, we discovered a new use for Danshen using machine learning methods. Surface plasmon resonance (SPR) experiments proved that the inhibitors interacted with the IDO target. Molecular dynamic simulations demonstrated the binding modes of the IDO inhibitors.

摘要

吲哚胺2,3-双加氧酶(IDO)作为一种免疫检查点,是癌症免疫治疗中一个很有前景的靶点。然而,目前的IDO抑制剂尚未获批用于临床;因此,仍需要新型IDO抑制剂。为了鉴定新型IDO抑制剂,我们从近期出版物中已知的IDO抑制剂库构建了朴素贝叶斯(NB)模型和递归划分(RP)模型。13种分子指纹被用作模型的描述符来预测IDO抑制剂。使用最佳机器学习模型对内部化合物库进行虚拟筛选,结果有50个命中化合物用于进一步基于酶的IDO抑制试验。因此,我们鉴定出三种新型IDO抑制剂,其IC值分别为1.30、4.10和4.68 μM。这些活性化合物在基于细胞的试验中也表现出IDO抑制活性。这些化合物属于丹参酮家族,丹参酮是一种源自丹参(一种中草药)干燥根的典型骨架家族,在中国、日本、美国和其他欧洲国家已被广泛用于治疗心脑血管疾病。因此,我们利用机器学习方法发现了丹参的一种新用途。表面等离子体共振(SPR)实验证明了这些抑制剂与IDO靶点相互作用。分子动力学模拟展示了IDO抑制剂的结合模式。

相似文献

5
Predicting DPP-IV inhibitors with machine learning approaches.运用机器学习方法预测二肽基肽酶-IV抑制剂
J Comput Aided Mol Des. 2017 Apr;31(4):393-402. doi: 10.1007/s10822-017-0009-6. Epub 2017 Feb 2.

引用本文的文献

1
Discovery of novel SOS1 inhibitors using machine learning.利用机器学习发现新型SOS1抑制剂。
RSC Med Chem. 2024 Mar 15;15(4):1392-1403. doi: 10.1039/d4md00063c. eCollection 2024 Apr 24.
5
A review on machine learning approaches and trends in drug discovery.关于药物发现中机器学习方法与趋势的综述。
Comput Struct Biotechnol J. 2021 Aug 12;19:4538-4558. doi: 10.1016/j.csbj.2021.08.011. eCollection 2021.
7
Machine and deep learning approaches for cancer drug repurposing.机器和深度学习方法在癌症药物再利用中的应用。
Semin Cancer Biol. 2021 Jan;68:132-142. doi: 10.1016/j.semcancer.2019.12.011. Epub 2020 Jan 3.
10
Inflammation in cancer and depression: a starring role for the kynurenine pathway.癌症与抑郁中的炎症:犬尿氨酸途径的主要作用。
Psychopharmacology (Berl). 2019 Oct;236(10):2997-3011. doi: 10.1007/s00213-019-05200-8. Epub 2019 Feb 26.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验