Hofmann Andreas, Heermann Dieter W
Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.
Methods Mol Biol. 2018;1837:389-401. doi: 10.1007/978-1-4939-8675-0_19.
In order to interpret data from Hi-C studies genome-wide contact probability maps need to be translated into models of functional 3D genome organization. Here, we first present an overview of computational methods to analyze contact probability maps in terms of features such as the level and shape of compartmentalization. Next, we describe approaches to modeling 3D genome organization based on Hi-C data.
为了解释全基因组范围内Hi-C研究的数据,需要将基因组接触概率图转化为功能性三维基因组组织模型。在此,我们首先概述计算方法,以便根据诸如分区水平和形状等特征来分析接触概率图。接下来,我们描述基于Hi-C数据对三维基因组组织进行建模的方法。