Parrish R Ryley, Codadu Neela K, Racca Claudia, Trevelyan Andrew J
Institute of Neuroscience, Medical School , Newcastle University, Newcastle upon Tyne , United Kingdom.
Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University , New York, New York.
J Neurophysiol. 2018 Nov 1;120(5):2358-2367. doi: 10.1152/jn.00287.2018. Epub 2018 Aug 15.
Changes in gene expression are an important mechanism by which activity levels are regulated in the nervous system. It is not known, however, how network activity influences gene expression in interneurons; since they themselves provide negative feedback in the form of synaptic inhibition, there exists a potential conflict between their cellular homeostatic tendencies and those of the network. We present a means of examining this issue, utilizing simple in vitro models showing different patterns of intense network activity. We found that the degree of concurrent pyramidal activation changed the polarity of the induced gene transcription. When pyramidal cells were quiescent, interneuronal activation led to an upregulation of glutamate decarboxylase 1 ( GAD1) and parvalbumin ( Pvalb) gene transcriptions, mediated by activation of the Ras/extracellular signal-related kinase mitogen-activated protein kinase (Ras/ERK MAPK) pathway. In contrast, coactivation of pyramidal cells led to an ionotropic glutamate receptor N-methyl-d-aspartate 2B-dependent decrease in transcription. Our results demonstrate a hitherto unrecognized complexity in how activity-dependent gene expression changes are manifest in cortical networks. NEW & NOTEWORTHY We demonstrate a novel feedback mechanism in cortical networks, by which glutamatergic drive, mediated through the Ras/ERK MAPK pathway, regulates gene transcription in interneurons. Using a unique feature of certain in vitro epilepsy models, we show that without this glutamatergic feedback, intense activation of interneurons causes parvalbumin and glutamate decarboxylase 1 mRNA expression to increase. If, on the other hand, pyramidal cells are coactivated with interneurons, this leads to a downregulation of these genes.
基因表达的变化是神经系统中调节活动水平的重要机制。然而,目前尚不清楚网络活动如何影响中间神经元中的基因表达;由于它们自身以突触抑制的形式提供负反馈,因此它们的细胞稳态倾向与网络的稳态倾向之间存在潜在冲突。我们提出了一种研究此问题的方法,利用显示不同强烈网络活动模式的简单体外模型。我们发现,同时发生的锥体神经元激活程度改变了诱导基因转录的极性。当锥体神经元静止时,中间神经元的激活导致谷氨酸脱羧酶1(GAD1)和小白蛋白(Pvalb)基因转录上调,这是由Ras/细胞外信号相关激酶丝裂原活化蛋白激酶(Ras/ERK MAPK)途径的激活介导的。相反,锥体神经元的共同激活导致转录依赖离子型谷氨酸受体N-甲基-D-天冬氨酸2B的减少。我们的结果证明了在皮质网络中活动依赖性基因表达变化如何表现方面存在迄今未被认识到的复杂性。新内容与值得注意之处我们在皮质网络中证明了一种新的反馈机制,通过该机制,由Ras/ERK MAPK途径介导的谷氨酸能驱动调节中间神经元中的基因转录。利用某些体外癫痫模型的独特特征,我们表明,如果没有这种谷氨酸能反馈,中间神经元的强烈激活会导致小白蛋白和谷氨酸脱羧酶1 mRNA表达增加。另一方面,如果锥体神经元与中间神经元共同激活,则会导致这些基因的下调。