Suppr超能文献

原子吸收光谱法分析汞、砷、锑和硒的仪器条件优化。

Optimization of instrument conditions for the analysis for mercury, arsenic, antimony and selenium by atomic absorption spectroscopy.

作者信息

Mohammed Elisabeth, Mohammed Terry, Mohammed Azad

机构信息

Department of Chemistry, The University of the West Indies, St Augustine, Trinidad and Tobago.

Department of Life Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago.

出版信息

MethodsX. 2018 Jul 29;5:824-833. doi: 10.1016/j.mex.2018.07.016. eCollection 2018.

Abstract

The chemical vapor generation atomic absorption spectrometry technique is extremely popular for trace analysis specifically hydride generation continuous flow systems for arsenic, antimony, selenium and cold vapor for mercury. Optimizing the instrument parameters as well as the hydride generating reactions will improve the sensitivity and reliability of the results obtained. The advantage of optimizing these conditions increases the production of hydrides or vapor species formed thereby improving recoveries. In addition this helps to reduce chemical interferences from other species that may compete with the analyte of interest for hydride formation. Parameters optimized include: •Reagent flow rate•Sample flow rate•Argon flow rate•Acetylene/Air ratio•Concentration of reagents•Read delay time For the analytical procedure the flow rate of the reagents and sample was affected by the tension on the peristaltic pump and the size of the tubing. The optimized flow rate for all reagents was between 0.9-1.0 mL/min and between 6-7 mL/min for the sample when both conditions were applied. The optimized type and concentrations of the reducing agent for Arsenic, Antimony and Selenium were NaBH4 (0.6% w/v), NaBH4 (0.7% w/v) and NaBH4 (0.1% w/v) in NaOH (0.5% w/v) respectively and SnCl2 (25% w/v) in HCl (20% v/v) for Mercury. The concentration and type of acid that produced the optimum signals for Arsenic, Antimony and Selenium were 5, 10 and 10 mol/dm-3 respectively. The flow rates for the carrier gas (Argon) for Arsenic, Antimony, Selenium and Mercury were optimized at 0.2, 0.2, 2.0 and 2.0 mL/min respectively. The optimized flow rate for fuel gas (Acetylene) for all the metals except Mercury was 2.5 mL/min. The optimized Instrument Read Delay Time for Mercury was 70 s and 20 s for Arsenic, Antimony and Selenium.

摘要

化学蒸气发生原子吸收光谱技术在痕量分析中极为常用,特别是用于砷、锑、硒的氢化物发生连续流动系统以及用于汞的冷蒸气发生系统。优化仪器参数以及氢化物发生反应将提高所得结果的灵敏度和可靠性。优化这些条件的好处是增加了所形成的氢化物或蒸气物种的产量,从而提高回收率。此外,这有助于减少其他物种可能与目标分析物竞争形成氢化物时产生的化学干扰。优化的参数包括:•试剂流速•样品流速•氩气流速•乙炔/空气比率•试剂浓度•读数延迟时间对于分析程序,试剂和样品的流速受蠕动泵上的张力和 tubing 尺寸的影响。当两种条件都适用时,所有试剂的优化流速在 0.9 - 1.0 mL/min 之间,样品的优化流速在 6 - 7 mL/min 之间。砷、锑和硒的还原剂的优化类型和浓度分别为 NaBH4(0.6% w/v)、NaBH4(0.7% w/v)和 NaBH4(0.1% w/v)于 NaOH(0.5% w/v)中,汞的还原剂为 SnCl2(25% w/v)于 HCl(20% v/v)中。产生砷、锑和硒最佳信号的酸的浓度和类型分别为 5、10 和 10 mol/dm-3。砷、锑、硒和汞的载气(氩气)流速分别优化为 0.2、0.2、2.0 和 2.0 mL/min。除汞外所有金属的燃气(乙炔)优化流速为 2.5 mL/min。汞的优化仪器读数延迟时间为 70 s,砷、锑和硒为 20 s。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6de3/6092476/262936e56057/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验