Suppr超能文献

深度学习与电影渲染:使用逼真的医学图像微调深度神经网络。

Deep learning with cinematic rendering: fine-tuning deep neural networks using photorealistic medical images.

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America.

出版信息

Phys Med Biol. 2018 Sep 13;63(18):185012. doi: 10.1088/1361-6560/aada93.

Abstract

Deep learning has emerged as a powerful artificial intelligence tool to interpret medical images for a growing variety of applications. However, the paucity of medical imaging data with high-quality annotations that is necessary for training such methods ultimately limits their performance. Medical data is challenging to acquire due to privacy issues, shortage of experts available for annotation, limited representation of rare conditions and cost. This problem has previously been addressed by using synthetically generated data. However, networks trained on synthetic data often fail to generalize to real data. Cinematic rendering simulates the propagation and interaction of light passing through tissue models reconstructed from CT data, enabling the generation of photorealistic images. In this paper, we present one of the first applications of cinematic rendering in deep learning, in which we propose to fine-tune synthetic data-driven networks using cinematically rendered CT data for the task of monocular depth estimation in endoscopy. Our experiments demonstrate that: (a) convolutional neural networks (CNNs) trained on synthetic data and fine-tuned on photorealistic cinematically rendered data adapt better to real medical images and demonstrate more robust performance when compared to networks with no fine-tuning, (b) these fine-tuned networks require less training data to converge to an optimal solution, and (c) fine-tuning with data from a variety of photorealistic rendering conditions of the same scene prevents the network from learning patient-specific information and aids in generalizability of the model. Our empirical evaluation demonstrates that networks fine-tuned with cinematically rendered data predict depth with 56.87% less error for rendered endoscopy images and 27.49% less error for real porcine colon endoscopy images.

摘要

深度学习已成为一种强大的人工智能工具,可用于解释越来越多种类的医学图像。然而,用于训练这些方法的高质量标注的医学成像数据的缺乏最终限制了它们的性能。由于隐私问题、用于标注的专家短缺、罕见情况的代表性有限以及成本等原因,医学数据难以获取。这个问题以前是通过使用合成数据来解决的。然而,在合成数据上训练的网络通常无法泛化到真实数据。电影渲染模拟了光通过从 CT 数据重建的组织模型的传播和相互作用,从而能够生成逼真的图像。在本文中,我们提出了电影渲染在深度学习中的首次应用之一,我们提议使用电影渲染的 CT 数据来微调基于合成数据的网络,用于内窥镜中单目深度估计任务。我们的实验表明:(a)在合成数据上训练并在逼真的电影渲染数据上微调的卷积神经网络(CNN)更适应真实的医学图像,并且与未经微调的网络相比,表现出更稳健的性能,(b)这些经过微调的网络需要更少的训练数据才能收敛到最佳解决方案,(c)使用同一场景的各种逼真渲染条件的数据进行微调可以防止网络学习特定于患者的信息,并有助于模型的泛化。我们的实证评估表明,经过电影渲染数据微调的网络预测渲染内窥镜图像的深度误差减少了 56.87%,预测真实猪结肠内窥镜图像的深度误差减少了 27.49%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验