Suppr超能文献

卷积神经网络在医学图像分析中的应用:全训练还是微调?

Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?

出版信息

IEEE Trans Med Imaging. 2016 May;35(5):1299-1312. doi: 10.1109/TMI.2016.2535302. Epub 2016 Mar 7.

Abstract

Training a deep convolutional neural network (CNN) from scratch is difficult because it requires a large amount of labeled training data and a great deal of expertise to ensure proper convergence. A promising alternative is to fine-tune a CNN that has been pre-trained using, for instance, a large set of labeled natural images. However, the substantial differences between natural and medical images may advise against such knowledge transfer. In this paper, we seek to answer the following central question in the context of medical image analysis: Can the use of pre-trained deep CNNs with sufficient fine-tuning eliminate the need for training a deep CNN from scratch? To address this question, we considered four distinct medical imaging applications in three specialties (radiology, cardiology, and gastroenterology) involving classification, detection, and segmentation from three different imaging modalities, and investigated how the performance of deep CNNs trained from scratch compared with the pre-trained CNNs fine-tuned in a layer-wise manner. Our experiments consistently demonstrated that 1) the use of a pre-trained CNN with adequate fine-tuning outperformed or, in the worst case, performed as well as a CNN trained from scratch; 2) fine-tuned CNNs were more robust to the size of training sets than CNNs trained from scratch; 3) neither shallow tuning nor deep tuning was the optimal choice for a particular application; and 4) our layer-wise fine-tuning scheme could offer a practical way to reach the best performance for the application at hand based on the amount of available data.

摘要

从头开始训练深度卷积神经网络(CNN)很困难,因为它需要大量的标记训练数据和大量的专业知识来确保正确的收敛。一种很有前途的替代方法是微调已经使用例如,使用大量标记的自然图像进行预训练的 CNN。然而,自然图像和医学图像之间的巨大差异可能不建议进行这种知识转移。在本文中,我们试图回答医学图像分析背景下的以下核心问题:充分微调使用预训练的深度 CNN 是否可以消除从头开始训练深度 CNN 的需要?为了解决这个问题,我们考虑了三个专业领域(放射科、心脏病学和胃肠病学)的四个不同的医学成像应用,涉及分类、检测和分割三种不同的成像模式,并研究了从头开始训练的深度 CNN 的性能与逐层微调的预训练 CNN 的性能相比如何。我们的实验一致表明:1)使用经过充分微调的预训练 CNN 优于(在最坏的情况下)或与从头开始训练的 CNN 性能相当;2)微调后的 CNN 对训练集的大小比从头开始训练的 CNN 更健壮;3)对于特定应用,浅层调整和深层调整都不是最佳选择;4)我们的逐层微调方案可以根据可用数据的数量为手头的应用提供一种实用的方法来达到最佳性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验