Suppr超能文献

微流控细胞培养平台捕获肝生理和复杂细胞相互作用。

Microfluidic Cell Culture Platforms to Capture Hepatic Physiology and Complex Cellular Interactions.

机构信息

Cellular and Tissue Engineering, and Synthetic Biology and Bio-Instrumentation, Draper, Cambridge, Massachusetts

Cellular and Tissue Engineering, and Synthetic Biology and Bio-Instrumentation, Draper, Cambridge, Massachusetts.

出版信息

Drug Metab Dispos. 2018 Nov;46(11):1638-1646. doi: 10.1124/dmd.118.083055. Epub 2018 Aug 16.

Abstract

Animal models such as rats and primates provide body-wide information for drug and metabolite responses, including organ-specific toxicity and any unforeseen side effects on other organs. Although effective in the drug-screening process, their translatability to humans is limited because of the lack of high concordance and correlation among enzymatic mechanisms, cellular mechanisms, and resulting toxicities. A significant mode of failure for safety prediction in drug screening is hepatotoxicity, resulting in ∼30% of all safety-related drug failures and withdrawals from the market. The liver is a multifunctional organ with diverse metabolic, secretory, and inflammatory response roles and is essential for maintaining key body functions. Conventional cell culture platforms (such as multiwell plate cultures) and metabolic enzyme systems (microsomes, cytochrome P450 enzymes) have been routinely used to assess drug pharmacokinetics and metabolism. However, current in vitro models often fail to recapitulate the complexity and dynamic nature of human tissues, imposing a heavy reliance on in vivo testing using preclinical species that have metabolic processes, disease mechanisms, and modes of toxicity distinct from humans. Recently, microphysiological systems (MPS) have gained attention as powerful tools with the potential to generate human-relevant information that can supplant and fill the gap of knowledge between preclinical animal models and simpler, conventional in vitro cell culture systems. Developments in microfabrication technologies for generating complex microfluidic systems, along with the ability to establish and maintain multicellular models to capture dynamic, human-relevant behavior, have provided new avenues to generate such physiologically relevant systems. These MPS platforms, when designed and developed with in vivo-derived design parameters, have the potential to capture key aspects and better mimic organ functionality. In this review, we discuss developments in microtechnologies for fabricating, establishing, and maintaining hepatic cell culture systems, with a specific focus on models that aim to capture in vivo physiology in vitro. By designing microscale systems to impart specific in vivo physiologic parameters, it is possible to create a dynamic system that can capture multiple aspects of the hepatic microenvironment, bringing us closer to a comprehensive in vitro testing platform for hepatic responses and toxicities.

摘要

动物模型(如大鼠和灵长类动物)可提供药物和代谢物反应的全身信息,包括器官特异性毒性和对其他器官的任何意外副作用。尽管在药物筛选过程中非常有效,但由于酶机制、细胞机制和毒性之间缺乏高度一致性和相关性,其在人类中的转化能力有限。药物筛选中安全性预测的一个主要失效模式是肝毒性,导致所有与安全性相关的药物失效和从市场撤回的约 30%。肝脏是一个多功能器官,具有多种代谢、分泌和炎症反应作用,对维持关键身体功能至关重要。传统的细胞培养平台(如多孔板培养)和代谢酶系统(微粒体、细胞色素 P450 酶)已常规用于评估药物药代动力学和代谢。然而,目前的体外模型往往无法重现人体组织的复杂性和动态特性,因此严重依赖使用具有不同于人类的代谢过程、疾病机制和毒性模式的临床前物种进行体内测试。最近,微生理系统(MPS)作为一种强大的工具引起了人们的关注,它有可能生成可替代和填补临床前动物模型和更简单的传统体外细胞培养系统之间知识差距的人类相关信息。用于生成复杂微流控系统的微制造技术的发展,以及建立和维持能够捕获动态、人类相关行为的多细胞模型的能力,为生成这种生理相关系统提供了新途径。这些 MPS 平台,如果使用体内衍生的设计参数进行设计和开发,有可能捕捉到关键方面并更好地模拟器官功能。在这篇综述中,我们讨论了用于制造、建立和维持肝细胞培养系统的微技术的发展,特别关注旨在体外模拟体内生理学的模型。通过设计微尺度系统来赋予特定的体内生理参数,可以创建一个动态系统,该系统可以捕获肝脏微环境的多个方面,使我们更接近全面的肝脏反应和毒性体外测试平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验