Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands.
ISME J. 2019 Jan;13(1):92-103. doi: 10.1038/s41396-018-0252-4. Epub 2018 Aug 16.
Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextualize marine polysaccharide mixtures and their bacterial utilization in several ways using the model bacterium Alteromonas macleodii 83-1, which can degrade multiple algal polysaccharides and contributes to polysaccharide degradation in the oceans. Transcriptomic, proteomic and exometabolomic profiling revealed cellular adaptations of A. macleodii 83-1 when degrading a mix of laminarin, alginate and pectin. Strain 83-1 exhibited substrate prioritization driven by catabolite repression, with initial laminarin utilization followed by simultaneous alginate/pectin utilization. This biphasic phenotype coincided with pronounced shifts in gene expression, protein abundance and metabolite secretion, mainly involving CAZymes/polysaccharide utilization loci but also other functional traits. Distinct temporal changes in exometabolome composition, including the alginate/pectin-specific secretion of pyrroloquinoline quinone, suggest that substrate-dependent adaptations influence chemical interactions within the community. The ecological relevance of cellular adaptations was underlined by molecular evidence that common marine macroalgae, in particular Saccharina and Fucus, release mixtures of alginate and pectin-like rhamnogalacturonan. Moreover, CAZyme microdiversity and the genomic predisposition towards polysaccharide mixtures among Alteromonas spp. suggest polysaccharide-related traits as an ecophysiological factor, potentially relating to distinct 'carbohydrate utilization types' with different ecological strategies. Considering the substantial primary productivity of algae on global scales, these insights contribute to the understanding of bacteria-algae interactions and the remineralization of chemically diverse polysaccharide pools, a key step in marine carbon cycling.
海藻多糖是一种重要的细菌营养源,也是海洋食物网的核心组成部分。然而,对于细菌降解多糖混合物的细胞和生态方面,由于其在自然栖息地中可能大量存在,因此了解甚少。在这里,我们使用模型细菌交替单胞菌 83-1 从多个方面来理解海洋多糖混合物及其细菌利用,该细菌可以降解多种藻类多糖,并有助于海洋中多糖的降解。转录组学、蛋白质组学和外代谢组学分析揭示了 A. macleodii 83-1 在降解混合的昆布多糖、褐藻酸盐和果胶时的细胞适应。该菌株表现出受分解代谢物阻遏驱动的底物优先化,最初利用昆布多糖,然后同时利用褐藻酸盐/果胶。这种双相表型与基因表达、蛋白质丰度和代谢物分泌的明显变化一致,主要涉及 CAZymes/多糖利用基因座,但也涉及其他功能特征。外代谢组组成的明显时间变化,包括褐藻酸盐/果胶特异性分泌吡咯喹啉醌,表明底物依赖性适应会影响群落内的化学相互作用。细胞适应的生态相关性通过分子证据得到强调,即常见的海洋大型藻类,特别是马尾藻和巨藻,会释放出褐藻酸盐和果胶样鼠李半乳糖醛酸聚糖的混合物。此外,交替单胞菌属中 CAZyme 的微多样性和对多糖混合物的基因组倾向表明多糖相关特征是一种生理生态因素,可能与具有不同生态策略的不同“碳水化合物利用类型”有关。考虑到藻类在全球范围内的大量初级生产力,这些研究结果有助于理解细菌-藻类相互作用以及化学多样性多糖库的再矿化,这是海洋碳循环的关键步骤。