Suppr超能文献

一种识别特定治疗方法下乳腺癌生存相关基因的新方法。

A Novel Approach for Identifying Relevant Genes for Breast Cancer Survivability on Specific Therapies.

作者信息

Tabl Ashraf Abou, Alkhateeb Abedalrhman, Pham Huy Quang, Rueda Luis, ElMaraghy Waguih, Ngom Alioune

机构信息

Department of Mechanical, Automotive and Materials Engineering (MAME), University of Windsor, Windsor, ON, Canada.

School of Computer Science, University of Windsor, Windsor, ON, Canada.

出版信息

Evol Bioinform Online. 2018 Aug 10;14:1176934318790266. doi: 10.1177/1176934318790266. eCollection 2018.

Abstract

Analyzing the genetic activity of breast cancer survival for a specific type of therapy provides a better understanding of the body response to the treatment and helps select the best course of action and while leading to the design of drugs based on gene activity. In this work, we use supervised and nonsupervised machine learning methods to deal with a multiclass classification problem in which we label the samples based on the combination of the 5-year survivability and treatment; we focus on hormone therapy, radiotherapy, and surgery. The proposed nonsupervised hierarchical models are created to find the highest separability between combinations of the classes. The supervised model consists of a combination of feature selection techniques and efficient classifiers used to find a potential set of biomarker genes specific to response to therapy. The results show that different models achieve different performance scores with accuracies ranging from 80.9% to 100%. We have investigated the roles of many biomarkers through the literature and found that some of the discriminative genes in the computational model such as , , , and are related to breast cancer and other types of cancer.

摘要

分析特定类型疗法下乳腺癌生存的基因活性,有助于更好地了解机体对治疗的反应,有助于选择最佳治疗方案,并基于基因活性设计药物。在这项工作中,我们使用监督式和非监督式机器学习方法来处理多类分类问题,其中我们根据5年生存率和治疗方法的组合对样本进行标记;我们重点关注激素疗法、放射疗法和手术。所提出的非监督式层次模型旨在找到类组合之间的最大可分离性。监督式模型由特征选择技术和高效分类器组成,用于找到一组特定于治疗反应的潜在生物标志物基因。结果表明,不同模型的性能得分不同,准确率在80.9%至100%之间。我们通过文献研究了许多生物标志物的作用,发现计算模型中的一些判别基因,如 、 、 和 与乳腺癌和其他类型的癌症有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8482/6088467/ac3a1855513a/10.1177_1176934318790266-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验