Faculty of Engineering, Departments Biomedical and Electromechanical, ENAP-RG, Autonomous University of Queretaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, C. P, 76807, San Juan del Río, Qro., Mexico.
Departments Biomedical Informatics, Neuroscience, and Neurology, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, 43210, USA.
J Med Syst. 2018 Aug 16;42(10):176. doi: 10.1007/s10916-018-1031-5.
Sudden cardiac death (SCD) is one of the main causes of death among people. A new methodology is presented for predicting the SCD based on ECG signals employing the wavelet packet transform (WPT), a signal processing technique, homogeneity index (HI), a nonlinear measurement for time series signals, and the Enhanced Probabilistic Neural Network classification algorithm. The effectiveness and usefulness of the proposed method is evaluated using a database of measured ECG data acquired from 20 SCD and 18 normal patients. The proposed methodology presents the following significant advantages: (1) compared with previous works, the proposed methodology achieves a higher accuracy using a single nonlinear feature, HI, thus requiring low computational resource for predicting an SCD onset in real-time, unlike other methodologies proposed in the literature where a large number of nonlinear features are used to predict an SCD event; (2) it is capable of predicting the risk of developing an SCD event up to 20 min prior to the onset with a high accuracy of 95.8%, superseding the prior 12 min prediction time reported recently, and (3) it uses the ECG signal directly without the need for transforming the signal to a heart rate variability signal, thus saving time in the processing.
心脏性猝死(SCD)是人群死亡的主要原因之一。本研究提出了一种基于心电图信号的新方法,该方法采用小波包变换(WPT)这一信号处理技术、非线性时间序列信号的均匀性指数(HI)和增强概率神经网络分类算法来预测 SCD。研究使用从 20 名 SCD 患者和 18 名正常患者中获得的测量 ECG 数据数据库来评估所提出方法的有效性和实用性。所提出的方法具有以下显著优点:(1)与以往的工作相比,该方法仅使用单个非线性特征 HI 即可实现更高的准确性,因此与文献中提出的需要使用大量非线性特征来预测 SCD 事件的其他方法相比,所需的计算资源较低,能够实时预测 SCD 的发生;(2)它能够在 SCD 发作前 20 分钟内以 95.8%的高精度预测发生 SCD 的风险,超过了最近报道的提前 12 分钟预测时间;(3)它直接使用心电图信号,而无需将信号转换为心率变异性信号,从而节省了处理时间。