Doctoral Program of Engineering Science, Faculty of Engineering, Universitas Sriwijaya, Palembang 30128, Indonesia.
Faculty of Science and Technology, Universitas Bina Darma, Palembang 30264, Indonesia.
Medicina (Kaunas). 2023 Jul 29;59(8):1394. doi: 10.3390/medicina59081394.
Sudden cardiac death (SCD) is a significant global health issue that affects individuals with and without a history of heart disease. Early identification of SCD risk factors is crucial in reducing mortality rates. This study aims to utilize electrocardiogram (ECG) tools, specifically focusing on heart rate variability (HRV), to detect early SCD risk factors. In this study, we expand the comparison group dataset to include five groups: Normal Sinus Rhythm (NSR), coronary artery disease (CAD), Congestive Heart Failure (CHF), Ventricular Tachycardia (VT), and SCD. ECG signals were recorded for 30 min and segmented into 5 min intervals, following the recommended HRV feature analysis guidelines. We introduce an innovative approach to HRV signal analysis by utilizing Convolutional Neural Networks (CNN). The CNN model was optimized by tuning hyperparameters such as the number of layers, learning rate, and batch size, significantly impacting the prediction accuracy. The findings demonstrate that the HRV approach, in conjunction with linear features and the DL method, achieved a higher accuracy rate, averaging 99.30%, reaching 97% sensitivity, 99.60% specificity, and 97.87% precision. Future research should focus on further exploring and refining DL methods in the context of HRV analysis to improve SCD prediction.
心脏性猝死 (SCD) 是一个重大的全球健康问题,影响有或没有心脏病史的个体。早期识别 SCD 的危险因素对于降低死亡率至关重要。本研究旨在利用心电图 (ECG) 工具,特别是心率变异性 (HRV),来检测早期 SCD 的危险因素。在这项研究中,我们将对比组数据集扩展到包括五个组别:正常窦性节律 (NSR)、冠状动脉疾病 (CAD)、充血性心力衰竭 (CHF)、室性心动过速 (VT) 和 SCD。ECG 信号记录 30 分钟,并按照 HRV 特征分析指南将其分为 5 分钟间隔。我们引入了一种利用卷积神经网络 (CNN) 进行 HRV 信号分析的创新方法。通过调整超参数,如层数、学习率和批量大小,对 CNN 模型进行了优化,这对预测准确性有显著影响。研究结果表明,HRV 方法与线性特征和深度学习方法相结合,实现了更高的准确率,平均准确率为 99.30%,达到 97%的灵敏度、99.60%的特异性和 97.87%的精准度。未来的研究应侧重于进一步探索和完善 HRV 分析中深度学习方法,以提高 SCD 的预测能力。