Suppr超能文献

引入“简单变量选择(SVS)方法”以提高化学计量学辅助荧光法对稀水溶液混合物定量分析的准确性。

Introducing 'Simple Variable Selection (SVS) Approach' for Improving the Quantitative Accuracy of Chemometric Assisted Fluorimetric Estimations of Dilute Aqueous Mixtures.

作者信息

Kumar Keshav

机构信息

Institute for Wine analysis and Beverage Research, Hochschule Geisenheim University, 65366, Geisenheim, Germany.

出版信息

J Fluoresc. 2018 Sep;28(5):1163-1171. doi: 10.1007/s10895-018-2280-x. Epub 2018 Aug 16.

Abstract

Excitation emission matrix fluorescence (EEMF) spectroscopy is a multiparametric fluorescence technique where the fluorescence intensity of a fluorophore is a function of excitation wavelength, emission wavelength and its concentration. The manual analysis of large volume of highly correlated EEMF data sets towards developing a calibration model for quantifying each fluorophores present in multifluorophoric mixtures is a difficult and time-consuming task. Over the years, Partial least square (PLS) algorithm has found its application towards providing swift and efficient analyses of large volumes of highly correlated spectral data sets. The PLS assisted EEMF spectroscopy has been successfully used towards quantifying the fluorophores in multifluorophoric mixtures without involving any pre-separation. However, the accuracy and robustness of developed calibration model can be significantly improved provided PLS analysis is carried out on the analytically relevant EEMF spectral variables. In the present work, a variable selection method baptized as simple variable selection (SVS) approach is introduced that provides a simple and computationally economical means of identifying the useful spectral variables for subsequent PLS analysis. The proposed SVS approach is successfully validated by analyzing the complex EEMF data sets of multifluorophoric mixtures of consisting of multifluorophoric mixtures of biological relevance. The proposed approach is found to provide a simple, swift and efficient means for developing a robust PLS assisted EEMF spectroscopy based calibration model for simultaneous quantification of various fluorophores present in multifluorophoric mixtures.

摘要

激发发射矩阵荧光(EEMF)光谱法是一种多参数荧光技术,其中荧光团的荧光强度是激发波长、发射波长及其浓度的函数。对大量高度相关的EEMF数据集进行人工分析以建立用于定量多荧光团混合物中每种荧光团的校准模型是一项困难且耗时的任务。多年来,偏最小二乘法(PLS)算法已被用于对大量高度相关的光谱数据集进行快速有效的分析。PLS辅助的EEMF光谱法已成功用于定量多荧光团混合物中的荧光团,而无需进行任何预分离。然而,如果对分析相关的EEMF光谱变量进行PLS分析,则可以显著提高所开发校准模型的准确性和稳健性。在本工作中,引入了一种称为简单变量选择(SVS)方法的变量选择方法,该方法提供了一种简单且计算经济的方法来识别用于后续PLS分析的有用光谱变量。通过分析具有生物学相关性的多荧光团混合物的复杂EEMF数据集,成功验证了所提出的SVS方法。发现所提出的方法为建立基于PLS辅助EEMF光谱法的稳健校准模型提供了一种简单、快速且有效的方法,用于同时定量多荧光团混合物中存在的各种荧光团。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验