Suppr超能文献

助听设备中的信噪比感知动态范围压缩。

Signal-to-Noise-Ratio-Aware Dynamic Range Compression in Hearing Aids.

机构信息

1 Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark.

出版信息

Trends Hear. 2018 Jan-Dec;22:2331216518790903. doi: 10.1177/2331216518790903.

Abstract

Fast-acting dynamic range compression is a level-dependent amplification scheme which aims to restore audibility for hearing-impaired listeners. However, when being applied to noisy speech at positive signal-to-noise ratios (SNRs), the gain function typically changes rapidly over time as it is driven by the short-term fluctuations of the speech signal. This leads to an amplification of the noise components in the speech gaps, which reduces the output SNR and distorts the acoustic properties of the background noise. An adaptive compression scheme is proposed here which utilizes information about the SNR in different frequency channels to adaptively change the characteristics of the compressor. Specifically, fast-acting compression is applied to speech-dominated time-frequency (T-F) units where the SNR is high, while slow-acting compression is used to effectively linearize the processing for noise-dominated T-F units where the SNR is low. A systematic evaluation of this SNR-aware compression scheme showed that the effective compression of speech components embedded in noise was similar to that of a conventional fast-acting system, whereas natural fluctuations in the background noise were preserved in a similar way as when a slow-acting compressor was applied.

摘要

快速作用动态范围压缩是一种依赖于级别的放大方案,旨在为听力受损的听众恢复可听度。然而,当应用于正信噪比(SNR)的噪声语音时,由于受到语音信号的短期波动的驱动,增益函数通常会随时间快速变化。这导致语音间隙中的噪声分量被放大,从而降低输出 SNR 并扭曲背景噪声的声学特性。本文提出了一种自适应压缩方案,该方案利用不同频率通道中的 SNR 信息来自适应地改变压缩机的特性。具体来说,快速作用压缩应用于 SNR 较高的语音主导时频(T-F)单元,而慢速作用压缩则用于有效地对 SNR 较低的噪声主导 T-F 单元进行线性化处理。对这种 SNR 感知压缩方案的系统评估表明,嵌入噪声中的语音成分的有效压缩与传统的快速作用系统相似,而背景噪声中的自然波动则以与慢速作用压缩机相似的方式保留。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/6100123/4c8e7269f573/10.1177_2331216518790903-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验