Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands; All authors contributed equally.
Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands; All authors contributed equally.
Trends Cogn Sci. 2018 Sep;22(9):764-779. doi: 10.1016/j.tics.2018.06.002. Epub 2018 Jun 29.
Perception and perceptual decision-making are strongly facilitated by prior knowledge about the probabilistic structure of the world. While the computational benefits of using prior expectation in perception are clear, there are myriad ways in which this computation can be realized. We review here recent advances in our understanding of the neural sources and targets of expectations in perception. Furthermore, we discuss Bayesian theories of perception that prescribe how an agent should integrate prior knowledge and sensory information, and investigate how current and future empirical data can inform and constrain computational frameworks that implement such probabilistic integration in perception.
知觉和知觉决策受到对世界概率结构的先验知识的极大促进。虽然在知觉中使用先验期望的计算优势是显而易见的,但这种计算可以通过无数种方式来实现。在这里,我们回顾了我们对知觉中期望的神经来源和目标的理解的最新进展。此外,我们讨论了感知的贝叶斯理论,这些理论规定了一个代理应该如何整合先验知识和感官信息,并研究当前和未来的经验数据如何为实现这种概率整合的计算框架提供信息和限制。