Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA.
J Anim Sci. 2018 Nov 21;96(11):4658-4673. doi: 10.1093/jas/sky332.
The central aim of this meta-analysis was to determine whether the rumen microbiome can serve as an accurate predictor of performance in beef and dairy cattle compared with predictions based on diet composition. To support this comparison, a set of models was derived and compared. Models predicted milk yield (MY), average daily gain (ADG), dry matter intake (DMI), dairy feed efficiency (FE), and beef FE using different sets of independent variables: diet (D), microbial (M), and experimental (E). Diet variables included dry matter, organic matter, neutral detergent fiber, acid detergent fiber, crude protein, ether extract, nonfiber carbohydrate, starch, and forage percentages. Microbiome variables included relative abundance of 3 major rumen bacterial phyla, species richness, and species diversity. Experimental variables included publication year, breed type (dairy, beef, or Bos indicus), and rumen sampling fraction (fluid or solid). A second set of models used D and E variables as predictors for the microbiome. For both the production and microbiome model sets, predictor variable sets were used individually and in combination. Linear mixed-effects regression, weighted by 1/standard error of the mean, was used to derive models using data from 51 peer-reviewed publications. Models for the same response variable were compared on the basis of concordance correlation coefficient with study effects removed (uCCC), root-estimated variance associated with study and error, and corrected Akaike information criterion values, wherever appropriate. The MY model using D + M + E predictors outperformed all other MY models (uCCC = 0.71). ADG was most accurately predicted by D alone (uCCC = 0.92). Interestingly, M + E was more successful at predicting DMI than any model using D variables. Similarly, dairy FE was more accurately predicted by M + E than D, albeit only slightly (uCCC = 0.69 vs. 0.65). Beef FE could only be modeled using D variables. Overall, breed type proved a better predictor of relative abundances of most rumen bacterial phyla than D. Conversely, species richness and diversity indicators were unaffected by breed type, but could be predicted by D with moderate precision and accuracy (uCCC = 0.63 to 0.69). This analysis suggests that diet and the microbiome may exert independent effects on various aspects of performance. Further research is necessary to determine the reasons for these independent influences.
本荟萃分析的主要目的是确定瘤胃微生物组是否可以作为预测牛肉和奶牛生产性能的准确指标,与基于饮食组成的预测相比。为了支持这一比较,我们推导并比较了一组模型。模型使用不同的独立变量集预测产奶量(MY)、平均日增重(ADG)、干物质摄入量(DMI)、奶牛饲料效率(FE)和牛肉 FE:饮食(D)、微生物(M)和实验(E)。饮食变量包括干物质、有机物、中性洗涤剂纤维、酸性洗涤剂纤维、粗蛋白、乙醚提取物、非纤维碳水化合物、淀粉和饲料百分比。微生物组变量包括 3 种主要瘤胃细菌门的相对丰度、物种丰富度和物种多样性。实验变量包括出版年份、品种类型(奶牛、肉牛或印度野牛)和瘤胃液采样部分(液体或固体)。第二组模型使用 D 和 E 变量作为微生物组的预测因子。对于生产和微生物组模型集,预测变量集单独使用和组合使用。使用来自 51 篇同行评议出版物的数据,通过线性混合效应回归进行模型推导,权重为平均值的 1/标准误差。对于相同的响应变量模型,在去除研究效应后基于一致性相关系数(uCCC)、与研究和误差相关的根估计方差以及适当情况下校正的 Akaike 信息准则值进行比较。使用 D + M + E 预测因子的 MY 模型优于所有其他 MY 模型(uCCC = 0.71)。ADG 是由 D 单独预测最准确的(uCCC = 0.92)。有趣的是,M + E 比任何使用 D 变量的模型都更成功地预测了 DMI。同样,M + E 比 D 更能准确预测奶牛 FE,尽管只是略有提高(uCCC = 0.69 与 0.65)。牛肉 FE 只能使用 D 变量进行建模。总体而言,品种类型被证明是预测大多数瘤胃细菌门相对丰度的更好指标,而不是 D。相反,物种丰富度和多样性指标不受品种类型的影响,但可以用 D 以中等精度和准确性进行预测(uCCC = 0.63 至 0.69)。本分析表明,饮食和微生物组可能对性能的各个方面产生独立影响。需要进一步研究确定这些独立影响的原因。