Max Planck Institute for Biological Cybernetics, Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Eberhard Karls University of Tübingen, Tübingen, Germany.
Max Planck Institute for Biological Cybernetics, Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Eberhard Karls University of Tübingen, Tübingen, Germany.
Neuroimage. 2018 Dec;183:336-345. doi: 10.1016/j.neuroimage.2018.08.032. Epub 2018 Aug 17.
Magnetic resonance spectroscopic imaging (MRSI) is a powerful tool for mapping metabolite levels across the brain, however, it generally suffers from long scan times. This severely hinders its application in clinical settings. Additionally, the presence of nuisance signals (e.g. the subcutaneous lipid signals close to the skull region in brain metabolite mapping) makes it challenging to apply conventional acceleration techniques to shorten the scan times. The goal of this work is, therefore, to increase the overall applicability of high resolution metabolite mapping using H MRSI by introducing a novel GRAPPA acceleration acquisition/reconstruction technique. An improved reconstruction method (MultiNet) is introduced that uses machine learning, specifically neural networks, to reconstruct accelerated data. The method is further modified to use more neural networks with nonlinear hidden layers and is then combined with a variable density undersampling scheme (MultiNet PyGRAPPA) to enable higher in-plane acceleration factors of R = 5.6 and R = 7 for a non-lipid suppressed ultra-short TR and TE H FID MRSI sequence. The proposed method is evaluated for high resolution metabolite mapping of the human brain at 9.4T. The results show that the proposed method is superior to conventional GRAPPA: there is no significant residual lipid aliasing artifact in the images when the proposed MultiNet method is used. Furthermore, the MultiNet PyGRAPPA acquisition/reconstruction method with R = 5.6 results in reproducible high resolution metabolite maps (with an in-plane matrix size of 64 × 64) that can be acquired in 2.8 min on 9.4T. In conclusion, using multiple neural networks to predict the missing points in GRAPPA reconstruction results in a more reliable data recovery while keeping the noise levels under control. Combining this high fidelity reconstruction with variable density undersampling (MultiNet PyGRAPPA) enables higher in-plane acceleration factors even for non-lipid suppressed H FID MRSI, without introducing any structured aliasing artifact in the image.
磁共振波谱成像(MRSI)是一种强大的工具,可用于绘制大脑中代谢物水平的图谱,然而,它通常扫描时间较长。这严重限制了它在临床环境中的应用。此外,存在干扰信号(例如,在脑代谢物映射中靠近颅骨区域的皮下脂质信号),使得应用常规加速技术来缩短扫描时间变得具有挑战性。因此,这项工作的目标是通过引入一种新的 GRAPPA 加速采集/重建技术,提高高分辨率代谢物映射的整体适用性。引入了一种改进的重建方法(MultiNet),该方法使用机器学习,特别是神经网络,来重建加速数据。该方法进一步修改为使用具有非线性隐藏层的更多神经网络,并与可变密度欠采样方案(MultiNet PyGRAPPA)相结合,以实现更高的平面内加速因子 R=5.6 和 R=7,用于非脂质抑制的超短 TR 和 TE H FID MRSI 序列。在 9.4T 下,对该方法进行了人体大脑高分辨率代谢物映射的评估。结果表明,与传统的 GRAPPA 相比,该方法具有优越性:当使用提出的 MultiNet 方法时,图像中没有明显的残留脂质伪影。此外,使用 R=5.6 的 MultiNet PyGRAPPA 采集/重建方法可在 9.4T 上以 2.8 分钟的时间获得可重复的高分辨率代谢物图谱(平面内矩阵大小为 64×64)。总之,使用多个神经网络来预测 GRAPPA 重建结果中的缺失点,可以在控制噪声水平的同时,获得更可靠的数据恢复。将这种高保真度重建与可变密度欠采样(MultiNet PyGRAPPA)相结合,即使对于非脂质抑制的 H FID MRSI,也可以实现更高的平面内加速因子,而不会在图像中引入任何结构伪影。