Suppr超能文献

胃慢波传播的高分辨率光学标测

High-resolution optical mapping of gastric slow wave propagation.

机构信息

Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama.

Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.

出版信息

Neurogastroenterol Motil. 2019 Jan;31(1):e13449. doi: 10.1111/nmo.13449. Epub 2018 Aug 20.

Abstract

BACKGROUND

Improved understanding of the details of gastric slow wave propagation could potentially inform new diagnosis and treatment options for stomach motility disorders. Optical mapping has been used extensively in cardiac electrophysiology. Although optical mapping has a number of advantages relative to electrical mapping, optical signals are highly sensitive to motion artifact. We recently introduced a novel cardiac optical mapping method that corrects motion artifact and enables optical mapping to be performed in beating hearts. Here, we reengineer the method as an experimental tool to map gastric slow waves.

METHODS

The method was developed and tested in 12 domestic farm pigs. Stomachs were exposed by laparotomy and stained with the voltage-sensitive fluorescence dye di-4-ANEPPS through a catheter placed in the gastroepiploic artery. Fiducial markers for motion tracking were attached to the serosa. The dye was excited by 450 or 505 nm light on alternate frames of an imaging camera running at 300 Hz. Emitted fluorescence was imaged between 607 and 695 nm. The optical slow wave signal was reconstructed using a combination of motion tracking and excitation ratiometry to suppress motion artifact. Optical slow wave signals were compared with simultaneously recorded bipolar electrograms and suction electrode signals, which approximate membrane potential.

KEY RESULTS

The morphology of optical slow waves was consistent with previously published microelectrode recordings and simultaneously recorded suction electrode signals. The timing of the optical slow wave signals was consistent with the bipolar electrograms.

CONCLUSIONS AND INFERENCES

Optical mapping of slow wave propagation in the stomach is feasible.

摘要

背景

对胃慢波传播细节的深入了解,可能为胃动力障碍的新诊断和治疗方案提供信息。光学标测在心脏电生理学中得到了广泛应用。尽管光学标测相对于电标测具有许多优势,但光学信号对运动伪影非常敏感。我们最近引入了一种新的心脏光学标测方法,可以校正运动伪影,使光学标测能够在跳动的心脏上进行。在这里,我们将该方法重新设计为一种实验工具,用于标测胃慢波。

方法

该方法在 12 头国产农场猪中进行了开发和测试。通过放置在胃网膜动脉中的导管对胃进行剖腹术暴露,并通过导管注入电压敏感荧光染料二-4-ANEPPS 进行染色。用于运动跟踪的基准标记物附着在浆膜上。荧光染料通过在运行频率为 300Hz 的成像相机的交替帧上用 450nm 或 505nm 光激发。发射荧光在 607nm 至 695nm 之间成像。通过运动跟踪和激发比色法的组合重建光学慢波信号,以抑制运动伪影。光学慢波信号与同时记录的双极电图和近似膜电位的抽吸电极信号进行了比较。

主要结果

光学慢波的形态与先前发表的微电极记录和同时记录的抽吸电极信号一致。光学慢波信号的时间与双极电图一致。

结论和推论

胃慢波传播的光学标测是可行的。

相似文献

1
High-resolution optical mapping of gastric slow wave propagation.
Neurogastroenterol Motil. 2019 Jan;31(1):e13449. doi: 10.1111/nmo.13449. Epub 2018 Aug 20.
2
Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts.
Biophys J. 2016 Jul 26;111(2):438-451. doi: 10.1016/j.bpj.2016.03.043.
3
Simultaneous optical imaging of gastric slow waves and contractions in the in vivo porcine stomach.
Am J Physiol Gastrointest Liver Physiol. 2024 Dec 1;327(6):G765-G782. doi: 10.1152/ajpgi.00033.2024. Epub 2024 Aug 27.
4
High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.
Neurogastroenterol Motil. 2017 May;29(5). doi: 10.1111/nmo.13010. Epub 2016 Dec 29.
5
Multi-channel wireless mapping of gastrointestinal serosal slow wave propagation.
Neurogastroenterol Motil. 2015 Apr;27(4):580-5. doi: 10.1111/nmo.12515. Epub 2015 Jan 20.
6
A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns.
Surg Endosc. 2017 Jan;31(1):477-486. doi: 10.1007/s00464-016-4936-4. Epub 2016 Apr 29.
7
Validation of noninvasive body-surface gastric mapping for detecting gastric slow-wave spatiotemporal features by simultaneous serosal mapping in porcine.
Am J Physiol Gastrointest Liver Physiol. 2022 Oct 1;323(4):G295-G305. doi: 10.1152/ajpgi.00049.2022. Epub 2022 Aug 2.
8
A novel approach to dual excitation ratiometric optical mapping of cardiac action potentials with di-4-ANEPPS using pulsed LED excitation.
IEEE Trans Biomed Eng. 2011 Jul;58(7):2120-6. doi: 10.1109/TBME.2011.2148719. Epub 2011 May 2.
9
Effects of Electrode Diameter and Contact Material on Signal Morphology of Gastric Bioelectrical Slow Wave Recordings.
Ann Biomed Eng. 2020 Apr;48(4):1407-1418. doi: 10.1007/s10439-020-02457-5. Epub 2020 Jan 24.
10
In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models.
Cardiovasc Res. 2019 Sep 1;115(11):1659-1671. doi: 10.1093/cvr/cvz039.

引用本文的文献

1
Simultaneous optical imaging of gastric slow waves and contractions in the in vivo porcine stomach.
Am J Physiol Gastrointest Liver Physiol. 2024 Dec 1;327(6):G765-G782. doi: 10.1152/ajpgi.00033.2024. Epub 2024 Aug 27.
2
Optimization of pacing parameters to entrain slow wave activity in the pig jejunum.
Sci Rep. 2024 Mar 13;14(1):6038. doi: 10.1038/s41598-024-56256-2.
4
Paralysis by analysis: Overcoming cardiac contraction with computer vision.
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2314448120. doi: 10.1073/pnas.2314448120. Epub 2023 Oct 4.
6
High-resolution in vivo monophasic gastric slow waves to quantify activation and recovery profiles.
Neurogastroenterol Motil. 2022 Dec;34(12):e14422. doi: 10.1111/nmo.14422. Epub 2022 Jun 20.
7
Real-Time Optical Mapping of Contracting Cardiac Tissues With GPU-Accelerated Numerical Motion Tracking.
Front Cardiovasc Med. 2022 May 24;9:787627. doi: 10.3389/fcvm.2022.787627. eCollection 2022.
8
Enlightening the frontiers of neurogastroenterology through optogenetics.
Am J Physiol Gastrointest Liver Physiol. 2020 Sep 1;319(3):G391-G399. doi: 10.1152/ajpgi.00384.2019. Epub 2020 Aug 5.
9
Optical mapping of electromechanics in intact organs.
Exp Biol Med (Maywood). 2020 Feb;245(4):368-373. doi: 10.1177/1535370219894942. Epub 2019 Dec 16.

本文引用的文献

1
High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications.
Am J Physiol Gastrointest Liver Physiol. 2017 Sep 1;313(3):G265-G276. doi: 10.1152/ajpgi.00127.2017. Epub 2017 May 25.
2
Regulation of Gastrointestinal Smooth Muscle Function by Interstitial Cells.
Physiology (Bethesda). 2016 Sep;31(5):316-26. doi: 10.1152/physiol.00006.2016.
3
Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts.
Biophys J. 2016 Jul 26;111(2):438-451. doi: 10.1016/j.bpj.2016.03.043.
4
Design and Use of Organic Voltage Sensitive Dyes.
Adv Exp Med Biol. 2015;859:27-53. doi: 10.1007/978-3-319-17641-3_2.
5
Loss of Interstitial Cells of Cajal and Patterns of Gastric Dysrhythmia in Patients With Chronic Unexplained Nausea and Vomiting.
Gastroenterology. 2015 Jul;149(1):56-66.e5. doi: 10.1053/j.gastro.2015.04.003. Epub 2015 Apr 8.
6
Interstitial cells: regulators of smooth muscle function.
Physiol Rev. 2014 Jul;94(3):859-907. doi: 10.1152/physrev.00037.2013.
7
Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside.
Physiology (Bethesda). 2013 Sep;28(5):310-7. doi: 10.1152/physiol.00022.2013.
8
The bioelectrical basis and validity of gastrointestinal extracellular slow wave recordings.
J Physiol. 2013 Sep 15;591(18):4567-79. doi: 10.1113/jphysiol.2013.254292. Epub 2013 May 27.
9
Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping.
Gastroenterology. 2012 Sep;143(3):589-598.e3. doi: 10.1053/j.gastro.2012.05.036. Epub 2012 May 27.
10
Optical imaging of voltage and calcium in cardiac cells & tissues.
Circ Res. 2012 Feb 17;110(4):609-23. doi: 10.1161/CIRCRESAHA.111.247494.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验