Suppr超能文献

跳动心脏中膜电位和心外膜变形的光学映射

Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts.

作者信息

Zhang Hanyu, Iijima Kenichi, Huang Jian, Walcott Gregory P, Rogers Jack M

机构信息

Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama.

Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.

出版信息

Biophys J. 2016 Jul 26;111(2):438-451. doi: 10.1016/j.bpj.2016.03.043.

Abstract

Cardiac optical mapping uses potentiometric fluorescent dyes to image membrane potential (Vm). An important limitation of conventional optical mapping is that contraction is usually arrested pharmacologically to prevent motion artifacts from obscuring Vm signals. However, these agents may alter electrophysiology, and by abolishing contraction, also prevent optical mapping from being used to study coupling between electrical and mechanical function. Here, we present a method to simultaneously map Vm and epicardial contraction in the beating heart. Isolated perfused swine hearts were stained with di-4-ANEPPS and fiducial markers were glued to the epicardium for motion tracking. The heart was imaged at 750 Hz with a video camera. Fluorescence was excited with cyan or blue LEDs on alternating camera frames, thus providing a 375-Hz effective sampling rate. Marker tracking enabled the pixel(s) imaging any epicardial site within the marked region to be identified in each camera frame. Cyan- and blue-elicited fluorescence have different sensitivities to Vm, but other signal features, primarily motion artifacts, are common. Thus, taking the ratio of fluorescence emitted by a motion-tracked epicardial site in adjacent frames removes artifacts, leaving Vm (excitation ratiometry). Reconstructed Vm signals were validated by comparison to monophasic action potentials and to conventional optical mapping signals. Binocular imaging with additional video cameras enabled marker motion to be tracked in three dimensions. From these data, epicardial deformation during the cardiac cycle was quantified by computing finite strain fields. We show that the method can simultaneously map Vm and strain in a left-sided working heart preparation and can image changes in both electrical and mechanical function 5 min after the induction of regional ischemia. By allowing high-resolution optical mapping in the absence of electromechanical uncoupling agents, the method relieves a long-standing limitation of optical mapping and has potential to enhance new studies in coupled cardiac electromechanics.

摘要

心脏光学标测使用电位荧光染料来成像膜电位(Vm)。传统光学标测的一个重要局限性在于,通常需要通过药理学方法使心脏收缩停止,以防止运动伪影掩盖Vm信号。然而,这些药物可能会改变电生理学,并且通过消除收缩,也会阻碍光学标测用于研究电功能与机械功能之间的耦合。在此,我们提出一种在跳动的心脏中同时标测Vm和心外膜收缩的方法。将离体灌注的猪心脏用di - 4 - ANEPPS染色,并将基准标记物粘贴在心外膜上以进行运动跟踪。用摄像机以750 Hz的频率对心脏进行成像。在交替的摄像机帧上用青色或蓝色发光二极管激发荧光,从而提供375 Hz的有效采样率。标记跟踪能够在每个摄像机帧中识别标记区域内成像任何心外膜位点的像素。青色和蓝色激发的荧光对Vm具有不同的敏感性,但其他信号特征(主要是运动伪影)是常见的。因此,取相邻帧中运动跟踪的心外膜位点发出的荧光比值可去除伪影,得到Vm(激发比率测定法)。通过与单相动作电位和传统光学标测信号进行比较,验证了重建的Vm信号。使用额外的摄像机进行双目成像能够在三维空间中跟踪标记物的运动。根据这些数据,通过计算有限应变场来量化心动周期中心外膜的变形。我们表明,该方法能够在左侧工作心脏标本中同时标测Vm和应变,并且能够在局部缺血诱导后5分钟成像电功能和机械功能的变化。通过在不存在机电解偶联剂的情况下实现高分辨率光学标测,该方法消除了光学标测长期存在的局限性,并有可能加强对心脏电机械耦合的新研究。

相似文献

1
Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts.
Biophys J. 2016 Jul 26;111(2):438-451. doi: 10.1016/j.bpj.2016.03.043.
2
Optical mapping of cardiac electromechanics in beating in vivo hearts.
Biophys J. 2023 Nov 7;122(21):4207-4219. doi: 10.1016/j.bpj.2023.09.017. Epub 2023 Sep 29.
4
A novel approach to dual excitation ratiometric optical mapping of cardiac action potentials with di-4-ANEPPS using pulsed LED excitation.
IEEE Trans Biomed Eng. 2011 Jul;58(7):2120-6. doi: 10.1109/TBME.2011.2148719. Epub 2011 May 2.
5
High-resolution optical mapping of gastric slow wave propagation.
Neurogastroenterol Motil. 2019 Jan;31(1):e13449. doi: 10.1111/nmo.13449. Epub 2018 Aug 20.
6
Correction of motion artifact in transmembrane voltage-sensitive fluorescent dye emission in hearts.
Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H985-93. doi: 10.1152/ajpheart.00574.2003. Epub 2004 May 6.
7
In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models.
Cardiovasc Res. 2019 Sep 1;115(11):1659-1671. doi: 10.1093/cvr/cvz039.
8
Image-based motion correction for optical mapping of cardiac electrical activity.
Ann Biomed Eng. 2015 May;43(5):1235-46. doi: 10.1007/s10439-014-1172-8. Epub 2014 Nov 11.
9
Electromechanical optical mapping.
Prog Biophys Mol Biol. 2017 Nov;130(Pt B):150-169. doi: 10.1016/j.pbiomolbio.2017.09.015. Epub 2017 Sep 22.
10
Optical mapping of Langendorff-perfused rat hearts.
J Vis Exp. 2009 Aug 11(30):1138. doi: 10.3791/1138.

引用本文的文献

2
Simultaneous optical imaging of gastric slow waves and contractions in the in vivo porcine stomach.
Am J Physiol Gastrointest Liver Physiol. 2024 Dec 1;327(6):G765-G782. doi: 10.1152/ajpgi.00033.2024. Epub 2024 Aug 27.
4
Paralysis by analysis: Overcoming cardiac contraction with computer vision.
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2314448120. doi: 10.1073/pnas.2314448120. Epub 2023 Oct 4.
5
Optical mapping of cardiac electromechanics in beating in vivo hearts.
Biophys J. 2023 Nov 7;122(21):4207-4219. doi: 10.1016/j.bpj.2023.09.017. Epub 2023 Sep 29.
6
Virtual blebbistatin: A robust and rapid software approach to motion artifact removal in optical mapping of cardiomyocytes.
Proc Natl Acad Sci U S A. 2023 Sep 19;120(38):e2212949120. doi: 10.1073/pnas.2212949120. Epub 2023 Sep 11.
8
Optical mapping of contracting hearts.
J Physiol. 2023 Apr;601(8):1353-1370. doi: 10.1113/JP283683. Epub 2023 Mar 19.
10
Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals.
Am J Physiol Heart Circ Physiol. 2022 Dec 1;323(6):H1137-H1166. doi: 10.1152/ajpheart.00439.2022. Epub 2022 Oct 21.

本文引用的文献

2
Image-based motion correction for optical mapping of cardiac electrical activity.
Ann Biomed Eng. 2015 May;43(5):1235-46. doi: 10.1007/s10439-014-1172-8. Epub 2014 Nov 11.
3
Motion estimation in cardiac fluorescence imaging with scale-space landmarks and optical flow: a comparative study.
IEEE Trans Biomed Eng. 2015 Feb;62(2):774-82. doi: 10.1109/TBME.2014.2364959. Epub 2014 Oct 23.
4
NADH changes during hypoxia, ischemia, and increased work differ between isolated heart preparations.
Am J Physiol Heart Circ Physiol. 2014 Feb 15;306(4):H529-37. doi: 10.1152/ajpheart.00696.2013. Epub 2013 Dec 13.
5
A century of optocardiography.
IEEE Rev Biomed Eng. 2014;7:115-25. doi: 10.1109/RBME.2013.2286296. Epub 2013 Oct 23.
6
The mechanical uncoupler blebbistatin is associated with significant electrophysiological effects in the isolated rabbit heart.
Exp Physiol. 2013 May;98(5):1009-27. doi: 10.1113/expphysiol.2012.069369. Epub 2013 Jan 4.
7
Mapping cardiac surface mechanics with structured light imaging.
Am J Physiol Heart Circ Physiol. 2012 Sep 15;303(6):H712-20. doi: 10.1152/ajpheart.00269.2012. Epub 2012 Jul 13.
9
A novel approach to dual excitation ratiometric optical mapping of cardiac action potentials with di-4-ANEPPS using pulsed LED excitation.
IEEE Trans Biomed Eng. 2011 Jul;58(7):2120-6. doi: 10.1109/TBME.2011.2148719. Epub 2011 May 2.
10
Models of stretch-activated ventricular arrhythmias.
J Electrocardiol. 2010 Nov-Dec;43(6):479-85. doi: 10.1016/j.jelectrocard.2010.05.014. Epub 2010 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验