IEEE Trans Image Process. 2019 Apr;28(4):1691-1704. doi: 10.1109/TIP.2018.2865684. Epub 2018 Aug 16.
Techniques exploiting the sparsity of images in a transform domain are effective for various applications in image and video processing. In particular, transform learning methods involve cheap computations and have been demonstrated to perform well in applications, such as image denoising and medical image reconstruction. Recently, we proposed methods for online learning of sparsifying transforms from streaming signals, which enjoy good convergence guarantees and involve lower computational costs than online synthesis dictionary learning. In this paper, we apply online transform learning to video denoising. We present a novel framework for online video denoising based on high-dimensional sparsifying transform learning for spatio-temporal patches. The patches are constructed either from corresponding 2D patches in successive frames or using an online block matching technique. The proposed online video denoising requires little memory and offers efficient processing. Numerical experiments evaluate the performance of the proposed video denoising algorithms on multiple video data sets. The proposed methods outperform several related and recent techniques, including denoising with 3D DCT, prior schemes based on dictionary learning, non-local means, background separation, and deep learning, as well as the popular VBM3D and VBM4D.
利用变换域中图像稀疏性的技术对于图像处理和视频处理的各种应用是有效的。特别是,变换学习方法涉及廉价的计算,并且已经在应用中表现良好,例如图像去噪和医学图像重建。最近,我们提出了从流信号中在线学习稀疏变换的方法,这些方法具有良好的收敛保证,并且涉及比在线综合字典学习更低的计算成本。在本文中,我们将在线变换学习应用于视频去噪。我们提出了一种新的基于时空补丁高维稀疏变换学习的在线视频去噪框架。这些补丁是从连续帧中的相应 2D 补丁构建的,或者使用在线块匹配技术构建。所提出的在线视频去噪需要很少的内存并且提供高效的处理。数值实验评估了所提出的视频去噪算法在多个视频数据集上的性能。所提出的方法优于几种相关和最近的技术,包括使用 3D DCT 的去噪、基于字典学习的先验方案、非局部均值、背景分离和深度学习,以及流行的 VBM3D 和 VBM4D。