Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain.
Phys Chem Chem Phys. 2018 Sep 12;20(35):22623-22628. doi: 10.1039/c8cp02104j.
We critically readdress the definition of thermal boundary resistance at an interface between two semiconductors. By means of atomistic simulations we provide evidence that the widely used Kapitza formalism predicts thermal boundary resistance values in good agreement with the more rigorous Onsager non-equilibrium thermodynamics picture. The latter is, however, better suited to provide physical insight on interface thermal rectification phenomena. We identify the factors that determine the temperature profile across the interface and the source of interface thermal rectification. To this end we perform non-equilibrium molecular dynamics computational experiments on a Si-Ge system with a graded compositional interface of varying thickness, considering thermal bias of different sign.
我们重新审视了半导体界面热边界电阻的定义。通过原子模拟,我们提供了证据表明,广泛使用的 Kapitza 形式主义预测的热边界电阻值与更严格的 Onsager 非平衡热力学图像非常吻合。然而,后者更适合提供界面热整流现象的物理见解。我们确定了决定界面温度分布和界面热整流源的因素。为此,我们在具有不同厚度的 Si-Ge 系统的渐变组成界面上进行了非平衡分子动力学计算实验,考虑了不同符号的热偏置。