U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida.
College of Marine Science, University of South Florida, St. Petersburg, Florida.
Glob Chang Biol. 2018 Nov;24(11):5471-5483. doi: 10.1111/gcb.14389. Epub 2018 Aug 21.
The global-scale degradation of coral reefs has reached a critical threshold wherein further declines threaten both ecological functionality and the persistence of reef structure. Geological records can provide valuable insights into the long-term controls on reef development that may be key to solving the modern coral-reef crisis. Our analyses of new and existing coral-reef cores from throughout the Florida Keys reef tract (FKRT) revealed significant spatial and temporal variability in reef development during the Holocene. Whereas maximum Holocene reef thickness in the Dry Tortugas was comparable to elsewhere in the western Atlantic, most of Florida's reefs had relatively thin accumulations of Holocene reef framework. During periods of active reef development, average reef accretion rates were similar throughout the FKRT at ~3 m/ky. The spatial variability in reef thickness was instead driven by differences in the duration of reef development. Reef accretion declined significantly from ~6,000 years ago to present, and by ~3,000 years ago, the majority of the FKRT was geologically senescent. Although sea level influenced the development of Florida's reefs, it was not the ultimate driver of reef demise. Instead, we demonstrate that the timing of reef senescence was modulated by subregional hydrographic variability, and hypothesize that climatic cooling was the ultimate cause of reef shutdown. The senescence of the FKRT left the ecosystem balanced at a delicate tipping point at which a veneer of living coral was the only barrier to reef erosion. Modern climate change and other anthropogenic disturbances have now pushed many reefs past that critical threshold and into a novel ecosystem state, in which reef structures built over millennia could soon be lost. The dominant role of climate in the development of the FKRT over timescales of decades to millennia highlights the potential vulnerability of both geological and ecological reef processes to anthropogenic climate change.
全球范围内的珊瑚礁退化已经达到了一个关键的临界点,进一步的衰退不仅威胁到生态功能,还威胁到珊瑚礁结构的持续存在。地质记录可以为珊瑚礁发展的长期控制提供有价值的见解,这可能是解决现代珊瑚礁危机的关键。我们对佛罗里达群岛礁区(FKRT)的新的和现有的珊瑚礁岩芯进行了分析,结果表明在全新世期间,珊瑚礁的发展存在显著的空间和时间变化。虽然在干龟群岛的全新世珊瑚礁厚度与大西洋西部其他地区相当,但佛罗里达州的大部分珊瑚礁的全新世珊瑚礁框架积累相对较薄。在活跃的珊瑚礁发展时期,FKRT 内的平均珊瑚礁附生率相似,约为 3 米/千年。珊瑚礁厚度的空间变化则是由珊瑚礁发展持续时间的差异驱动的。从大约 6000 年前到现在,珊瑚礁附生率显著下降,到大约 3000 年前,FKRT 的大部分地区已经在地质上进入衰老期。尽管海平面影响了佛罗里达州的珊瑚礁的发展,但它并不是珊瑚礁消亡的最终驱动因素。相反,我们证明了珊瑚礁衰老的时间是由亚区域水文变化调制的,并假设气候变冷是珊瑚礁关闭的最终原因。FKRT 的衰老使生态系统处于一个微妙的临界点上,仅靠一层活珊瑚作为珊瑚礁侵蚀的唯一屏障。现代气候变化和其他人为干扰已经使许多珊瑚礁超过了这个临界点,进入了一个新的生态系统状态,在这个状态下,数千年建立的珊瑚礁结构可能很快就会消失。气候在 FKRT 发展中的主导作用,跨越了几十年到几千年的时间尺度,突显了地质和生态珊瑚礁过程对人为气候变化的潜在脆弱性。