Suppr超能文献

化学反硝化作用产生的一氧化二氮:前寒武纪温室效应和需氧呼吸进化中的一个可能缺失环节。

Nitrous oxide from chemodenitrification: A possible missing link in the Proterozoic greenhouse and the evolution of aerobic respiration.

机构信息

School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia.

Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania.

出版信息

Geobiology. 2018 Nov;16(6):597-609. doi: 10.1111/gbi.12311. Epub 2018 Aug 22.

Abstract

The potent greenhouse gas nitrous oxide (N O) may have been an important constituent of Earth's atmosphere during Proterozoic (~2.5-0.5 Ga). Here, we tested the hypothesis that chemodenitrification, the rapid reduction of nitric oxide by ferrous iron, would have enhanced the flux of N O from ferruginous Proterozoic seas. We empirically derived a rate law, , and measured an isotopic site preference of +16‰ for the reaction. Using this empirical rate law, and integrating across an oceanwide oxycline, we found that low nM NO and μM-low mM Fe concentrations could have sustained a sea-air flux of 100-200 Tg N O-N year , if N fixation rates were near-modern and all fixed N was emitted as N O. A 1D photochemical model was used to obtain steady-state atmospheric N O concentrations as a function of sea-air N O flux across the wide range of possible pO values (0.001-1 PAL). At 100-200 Tg N O-N year and >0.1 PAL O , this model yielded low-ppmv N O, which would produce several degrees of greenhouse warming at 1.6 ppmv CH and 320 ppmv CO . These results suggest that enhanced N O production in ferruginous seawater via a previously unconsidered chemodenitrification pathway may have helped to fill a Proterozoic "greenhouse gap," reconciling an ice-free Mesoproterozoic Earth with a less luminous early Sun. A particularly notable result was that high N O fluxes at intermediate O concentrations (0.01-0.1 PAL) would have enhanced ozone screening of solar UV radiation. Due to rapid photolysis in the absence of an ozone shield, N O is unlikely to have been an important greenhouse gas if Mesoproterozoic O was 0.001 PAL. At low O , N O might have played a more important role as life's primary terminal electron acceptor during the transition from an anoxic to oxic surface Earth, and correspondingly, from anaerobic to aerobic metabolisms.

摘要

强温室气体氧化亚氮(N2O)在元古宙(~2.5-0.5Ga)可能是地球大气的重要组成部分。在这里,我们检验了这样一个假设,即化学反硝化作用,即二价铁对一氧化氮的快速还原,会增强富铁元古宙海洋中 N2O 的通量。我们从经验中得出了一个速率定律, ,并测量了该反应的同位素位置偏好值为+16‰。使用这个经验速率定律,并在整个海洋范围内积分,我们发现,如果固氮速率接近现代水平且所有固定氮都以 N2O 的形式排放,那么低 nM 浓度的 NO 和 μM-低 mM 浓度的 Fe 可以维持 100-200Tg N2O-N 年的海气通量。一个一维光化学模型被用来获得作为可能的 pO 值(0.001-1PAL)范围内的海气 N2O 通量函数的大气 N2O 浓度的稳态值。在 100-200Tg N2O-N 年和>0.1PAL O 的情况下,这个模型产生了低 ppmv 的 N2O,这将在 1.6ppm CH 和 320ppm CO 的情况下导致几度的温室变暖。这些结果表明,通过以前未被考虑的化学反硝化途径在富铁海水中增强 N2O 的产生,可能有助于填补元古宙的“温室空白”,使中元古代地球与早期不那么明亮的太阳相协调。一个特别值得注意的结果是,在中等 O 浓度(0.01-0.1PAL)下的高 N2O 通量会增强对太阳紫外线的臭氧屏蔽。由于没有臭氧屏蔽的快速光解,N2O 不太可能在 Mesoproterozoic O 为 0.001PAL 的情况下成为一种重要的温室气体。在低 O 的情况下,N2O 可能在从缺氧到有氧的地表地球的转变过程中,作为生命的主要末端电子受体,起到更重要的作用,相应地,从厌氧到需氧代谢。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验