Suppr超能文献

通过化学气相沉积生长的大面积单层半导体的高温连续波泵浦激光发射

High-Temperature Continuous-Wave Pumped Lasing from Large-Area Monolayer Semiconductors Grown by Chemical Vapor Deposition.

作者信息

Zhao Liyun, Shang Qiuyu, Gao Yan, Shi Jia, Liu Zhen, Chen Jie, Mi Yang, Yang Pengfei, Zhang Zhepeng, Du Wenna, Hong Min, Liang Yin, Xie Jingya, Hu Xiaoyong, Peng Bo, Leng Jiancai, Liu Xinfeng, Zhao Yue, Zhang Yanfeng, Zhang Qing

机构信息

Department of Materials Science and Engineering, College of Engineering , Peking University , Beijing 100871 , China.

Research Center for Wide Gap Semiconductor , Peking University , Beijing 100871 , China.

出版信息

ACS Nano. 2018 Sep 25;12(9):9390-9396. doi: 10.1021/acsnano.8b04511. Epub 2018 Sep 4.

Abstract

The realization of low-energy-consumption lasers based on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) is crucial for the development of optical communications, flexible displays, and lasers on the chip level. However, among the as-demonstrated TMDC-based lasers so far, the gain materials are mainly achieved by a mechanical exfoliation approach accompanied by poor reproducibility and controllability. In this work, we report a controllable design for generating large-scale lasing from chemical vapor deposition (CVD)-derived high-quality monolayer MoS film. Strong continuous-wave optically driven whispering-gallery-mode lasing is achieved in a wide temperature range from 77 to 400 K. The eminent lasing performances result from the strong spatial confinement of carriers and the enhanced efficiency of spontaneous emission owing to the lensing and screening effects of silica microsphere cavities. These findings not only advance the fundamental understanding of 2D lasing effects but also provide solutions to fabricate low-cost, scalable, and integratable TMDC-based lasers.

摘要

基于原子级薄的二维(2D)过渡金属二硫属化物(TMDC)实现低能耗激光器对于光通信、柔性显示器以及芯片级激光器的发展至关重要。然而,在目前已展示的基于TMDC的激光器中,增益材料主要通过机械剥离方法获得,其再现性和可控性较差。在这项工作中,我们报道了一种可控设计,用于从化学气相沉积(CVD)衍生的高质量单层MoS薄膜产生大规模激光。在77至400 K的宽温度范围内实现了强连续波光驱动回音壁模式激光。卓越的激光性能源于载流子的强空间限制以及由于二氧化硅微球腔的透镜和屏蔽效应而提高的自发发射效率。这些发现不仅推进了对二维激光效应的基本理解,还为制造低成本、可扩展且可集成的基于TMDC的激光器提供了解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验