Suppr超能文献

化学气相沉积法生长的 MoS2 的高光致发光效率。

High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition.

机构信息

Electrical Engineering and Computer Sciences, University of California at Berkeley , Berkeley, California 94720, United States.

Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.

出版信息

ACS Nano. 2016 Jul 26;10(7):6535-41. doi: 10.1021/acsnano.6b03443. Epub 2016 Jun 15.

Abstract

One of the major challenges facing the rapidly growing field of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is the development of growth techniques to enable large-area synthesis of high-quality materials. Chemical vapor deposition (CVD) is one of the leading techniques for the synthesis of TMDCs; however, the quality of the material produced is limited by defects formed during the growth process. A very useful nondestructive technique that can be utilized to probe defects in semiconductors is the room-temperature photoluminescence (PL) quantum yield (QY). It was recently demonstrated that a PL QY near 100% can be obtained in MoS2 and WS2 monolayers prepared by micromechanical exfoliation by treating samples with an organic superacid: bis(trifluoromethane)sulfonimide (TFSI). Here we have performed a thorough exploration of this chemical treatment on CVD-grown MoS2 samples. We find that the as-grown monolayers must be transferred to a secondary substrate, which releases strain, to obtain high QY by TFSI treatment. Furthermore, we find that the sulfur precursor temperature during synthesis of the MoS2 plays a critical role in the effectiveness of the treatment. By satisfying the aforementioned conditions we show that the PL QY of CVD-grown monolayers can be improved from ∼0.1% in the as-grown case to ∼30% after treatment, with enhancement factors ranging from 100 to 1500× depending on the initial monolayer quality. We also found that after TFSI treatment the PL emission from MoS2 films was visible by eye despite the low absorption (5-10%). The discovery of an effective passivation strategy will speed the development of scalable high-performance optoelectronic and electronic devices based on MoS2.

摘要

二维(2D)过渡金属二卤化物(TMDCs)领域面临的主要挑战之一是开发能够实现大面积高质量材料合成的生长技术。化学气相沉积(CVD)是合成 TMDCs 的主要技术之一;然而,所生产材料的质量受到生长过程中形成的缺陷的限制。室温光致发光(PL)量子产率(QY)是一种非常有用的无损技术,可用于探测半导体中的缺陷。最近的研究表明,通过用有机超酸双(三氟甲烷磺酰)亚胺(TFSI)处理样品,可以在通过微机械剥落制备的 MoS2 和 WS2 单层中获得接近 100%的 PL QY。在这里,我们对 CVD 生长的 MoS2 样品进行了彻底的化学处理探索。我们发现,必须将原始生长的单层转移到二次衬底上,以释放应变,才能通过 TFSI 处理获得高 QY。此外,我们发现,MoS2 合成过程中的硫前体温度对处理效果起着关键作用。通过满足上述条件,我们表明可以将 CVD 生长的单层的 PL QY 从原始生长的约 0.1%提高到处理后的约 30%,增强因子范围为 100 到 1500×,具体取决于初始单层的质量。我们还发现,在 TFSI 处理后,即使吸收率(5-10%)较低,MoS2 薄膜的 PL 发射也可以用肉眼看到。有效钝化策略的发现将加速基于 MoS2 的可扩展高性能光电和电子器件的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验