Mayer William P, Murray Andrew J, Brenner-Morton Susan, Jessell Thomas M, Tourtellotte Warren G, Akay Turgay
Atlantic Mobility Action Project, Brain Repair Center, Department of Medical Neuroscience, Dalhousie University , Halifax, Nova Scotia , Canada.
Department of Morphology, Federal University of Espirito Santo , Vitoria , Brazil.
J Neurophysiol. 2018 Nov 1;120(5):2484-2497. doi: 10.1152/jn.00250.2018. Epub 2018 Aug 22.
Terrestrial animals increase their walking speed by increasing the activity of the extensor muscles. However, the mechanism underlying how this speed-dependent amplitude modulation is achieved remains obscure. Previous studies have shown that group Ib afferent feedback from Golgi tendon organs that signal force is one of the major regulators of the strength of muscle activity during walking in cats and humans. In contrast, the contribution of group Ia/II afferent feedback from muscle spindle stretch receptors that signal angular displacement of leg joints is unclear. Some studies indicate that group II afferent feedback may be important for amplitude regulation in humans, but the role of muscle spindle feedback in regulation of muscle activity strength in quadrupedal animals is very poorly understood. To examine the role of feedback from muscle spindles, we combined in vivo electrophysiology and motion analysis with mouse genetics and gene delivery with adeno-associated virus. We provide evidence that proprioceptive sensory feedback from muscle spindles is important for the regulation of the muscle activity strength and speed-dependent amplitude modulation. Furthermore, our data suggest that feedback from the muscle spindles of the ankle extensor muscles, the triceps surae, is the main source for this mechanism. In contrast, muscle spindle feedback from the knee extensor muscles, the quadriceps femoris, has no influence on speed-dependent amplitude modulation. We provide evidence that proprioceptive feedback from ankle extensor muscles is critical for regulating muscle activity strength as gait speed increases. NEW & NOTEWORTHY Animals upregulate the activity of extensor muscles to increase their walking speed, but the mechanism behind this is not known. We show that this speed-dependent amplitude modulation requires proprioceptive sensory feedback from muscle spindles of ankle extensor muscle. In the absence of muscle spindle feedback, animals cannot walk at higher speeds as they can when muscle spindle feedback is present.
陆生动物通过增加伸肌的活动来提高行走速度。然而,这种依赖速度的幅度调制是如何实现的潜在机制仍不清楚。先前的研究表明,来自高尔基腱器官的Ib类传入反馈信号(即力信号)是猫和人类行走过程中肌肉活动强度的主要调节因子之一。相比之下,来自肌肉梭形拉伸感受器的Ia/II类传入反馈信号(即腿部关节角位移信号)的作用尚不清楚。一些研究表明,II类传入反馈可能对人类的幅度调节很重要,但肌肉梭形反馈在四足动物肌肉活动强度调节中的作用却知之甚少。为了研究肌肉梭形反馈的作用,我们将体内电生理学和运动分析与小鼠遗传学以及腺相关病毒基因传递相结合。我们提供的证据表明,来自肌肉梭形的本体感觉反馈对于肌肉活动强度的调节和依赖速度的幅度调制很重要。此外,我们的数据表明,踝部伸肌(即腓肠肌)的肌肉梭形反馈是这种机制的主要来源。相比之下,膝部伸肌(即股四头肌)的肌肉梭形反馈对依赖速度的幅度调制没有影响。我们提供的证据表明,随着步态速度增加,踝部伸肌的本体感觉反馈对于调节肌肉活动强度至关重要。
动物上调伸肌的活动以提高行走速度,但其背后的机制尚不清楚。我们表明,这种依赖速度的幅度调制需要来自踝部伸肌肌肉梭形的本体感觉反馈。在没有肌肉梭形反馈的情况下,动物无法像存在肌肉梭形反馈时那样以更高的速度行走。