Centre of Excellence for Biosecurity Risk Analysis (CEBRA), School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia.
School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia.
PLoS One. 2018 Aug 22;13(8):e0202254. doi: 10.1371/journal.pone.0202254. eCollection 2018.
Detecting exotic plant species is essential for invasive species management. By accounting for factors likely to affect species' detection rates (e.g. survey conditions, observer experience), detectability models can help choose search methods and allocate search effort. Integrating information on species' traits can refine detectability models, and might be particularly valuable if these traits can help improve estimates of detectability where data on particular species are rare. Analysing data collected during line transect distance sampling surveys in Indonesia, we used a multi-species hierarchical distance sampling model to evaluate how plant height, leaf size, leaf shape, and survey location influenced plant species detectability in secondary tropical rainforests. Detectability of the exotic plant species increased with plant height and leaf size. Detectability varied among the different survey locations. We failed to detect a clear effect of leaf shape on detectability. This study indicates that information on traits might improve predictions about exotic species detection, which can then be used to optimise the allocation of search effort for efficient species management. The innovation of the study lies in the multi-species distance sampling model, where the distance-detection function depends on leaf traits and height. The method can be applied elsewhere, including for different traits that may be relevant in other contexts. Trait-based multispecies distance sampling can be a practical approach for sampling exotic shrubs, herbs, or grasses species in the understorey of tropical forests.
检测外来植物物种对于入侵物种管理至关重要。通过考虑可能影响物种检测率的因素(例如调查条件、观察者经验),可探测性模型可以帮助选择搜索方法和分配搜索工作。整合物种特征的信息可以改进可探测性模型,如果这些特征可以帮助在特定物种数据稀少的情况下提高可探测性估计,那么这可能特别有价值。我们在印度尼西亚进行的样线距离抽样调查中分析了收集的数据,使用多物种层次距离抽样模型来评估植物高度、叶片大小、叶片形状和调查地点如何影响次生热带雨林中植物物种的可探测性。外来植物物种的可探测性随着植物高度和叶片大小的增加而增加。不同的调查地点之间的可探测性存在差异。我们未能发现叶片形状对可探测性的明显影响。本研究表明,特征信息可能会提高对外来物种检测的预测,从而可以优化搜索工作的分配,以实现有效的物种管理。本研究的创新之处在于多物种距离抽样模型,其中距离检测功能取决于叶片特征和高度。该方法可在其他地方应用,包括在其他情况下可能相关的不同特征。基于特征的多物种距离抽样可以成为热带森林林下外来灌木、草本或草类物种抽样的实用方法。