Suppr超能文献

用于无监督和半监督分类的灵活亲和矩阵学习

Flexible Affinity Matrix Learning for Unsupervised and Semisupervised Classification.

作者信息

Fang Xiaozhao, Han Na, Wong Wai Keung, Teng Shaohua, Wu Jigang, Xie Shengli, Li Xuelong

出版信息

IEEE Trans Neural Netw Learn Syst. 2019 Apr;30(4):1133-1149. doi: 10.1109/TNNLS.2018.2861839. Epub 2018 Aug 22.

Abstract

In this paper, we propose a unified model called flexible affinity matrix learning (FAML) for unsupervised and semisupervised classification by exploiting both the relationship among data and the clustering structure simultaneously. To capture the relationship among data, we exploit the self-expressiveness property of data to learn a structured matrix in which the structures are induced by different norms. A rank constraint is imposed on the Laplacian matrix of the desired affinity matrix, so that the connected components of data are exactly equal to the cluster number. Thus, the clustering structure is explicit in the learned affinity matrix. By making the estimated affinity matrix approximate the structured matrix during the learning procedure, FAML allows the affinity matrix itself to be adaptively adjusted such that the learned affinity matrix can well capture both the relationship among data and the clustering structure. Thus, FAML has the potential to perform better than other related methods. We derive optimization algorithms to solve the corresponding problems. Extensive unsupervised and semisupervised classification experiments on both synthetic data and real-world benchmark data sets show that the proposed FAML consistently outperforms the state-of-the-art methods.

摘要

在本文中,我们提出了一种名为灵活亲和矩阵学习(FAML)的统一模型,用于通过同时利用数据之间的关系和聚类结构进行无监督和半监督分类。为了捕捉数据之间的关系,我们利用数据的自表达特性来学习一个结构化矩阵,其中结构由不同的范数诱导。对期望亲和矩阵的拉普拉斯矩阵施加秩约束,使得数据的连通分量恰好等于聚类数。因此,聚类结构在学习到的亲和矩阵中是明确的。通过在学习过程中使估计的亲和矩阵近似结构化矩阵,FAML允许亲和矩阵本身进行自适应调整,以便学习到的亲和矩阵能够很好地捕捉数据之间的关系和聚类结构。因此,FAML有潜力比其他相关方法表现得更好。我们推导了优化算法来解决相应问题。在合成数据和真实世界基准数据集上进行的大量无监督和半监督分类实验表明,所提出的FAML始终优于现有方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验