Suppr超能文献

从金属氢化物到金属硼氢化物。

From Metal Hydrides to Metal Borohydrides.

机构信息

Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Langelandsgade 140 , 8000 Aarhus C , Denmark.

Department of Physics and Astronomy, Fuels and Energy Technology Institute , Curtin University , Wark Avenue , Bentley , Western Australia 6102 , Australia.

出版信息

Inorg Chem. 2018 Sep 4;57(17):10768-10780. doi: 10.1021/acs.inorgchem.8b01398. Epub 2018 Aug 23.

Abstract

Commencing from metal hydrides, versatile synthesis, purification, and desolvation approaches are presented for a wide range of metal borohydrides and their solvates. An optimized and generalized synthesis method is provided for 11 different metal borohydrides, M(BH) , (M = Li, Na, Mg, Ca, Sr, Ba, Y, Nd, Sm, Gd, Yb), providing controlled access to more than 15 different polymorphs and in excess of 20 metal borohydride solvate complexes. Commercially unavailable metal hydrides (MH , M = Sr, Ba, Y, Nd, Sm, Gd, Yb) are synthesized utilizing high pressure hydrogenation. For synthesis of metal borohydrides, all hydrides are mechanochemically activated prior to reaction with dimethylsulfide borane. A purification process is devised, alongside a complementary desolvation process for solvate complexes, yielding high purity products. An array of polymorphically pure metal borohydrides are synthesized in this manner, supporting the general applicability of this method. Additionally, new metal borohydrides, α-, α'- β-, γ-Yb(BH), α-Nd(BH) and new solvates Sr(BH)·1THF, Sm(BH)·1THF, Yb(BH)· xTHF, x = 1 or 2, Nd(BH)·1MeS, Nd(BH)·1.5THF, Sm(BH)·1.5THF and Yb(BH)· xMeS (" x" = unspecified), are presented here. Synthesis conditions are optimized individually for each metal, providing insight into reactivity and mechanistic concerns. The reaction follows a nucleophilic addition/hydride-transfer mechanism. Therefore, the reaction is most efficient for ionic and polar-covalent metal hydrides. The presented synthetic approaches are widely applicable, as demonstrated by permitting facile access to a large number of materials and by performing a scale-up synthesis of LiBH.

摘要

从金属氢化物开始,介绍了多种用于合成、纯化和去溶剂化的方法,适用于广泛的金属硼氢化物及其溶剂化物。为 11 种不同的金属硼氢化物 M(BH)(M = Li、Na、Mg、Ca、Sr、Ba、Y、Nd、Sm、Gd、Yb)提供了优化和通用的合成方法,从而可以控制地获得超过 15 种不同的多晶型物和超过 20 种金属硼氢化物溶剂络合物。利用高压氢化合成了商业上不可用的金属氢化物(MH,M = Sr、Ba、Y、Nd、Sm、Gd、Yb)。对于金属硼氢化物的合成,所有氢化物在与二甲基硫硼烷反应之前都进行机械化学活化。设计了一种纯化过程以及一种用于溶剂络合物的补充去溶剂化过程,从而得到高纯度的产物。以这种方式合成了一系列多晶纯金属硼氢化物,证明了该方法的普遍适用性。此外,还提出了新的金属硼氢化物α-、α'-β-、γ-Yb(BH)、α-Nd(BH)和新的溶剂化物 Sr(BH)·1THF、Sm(BH)·1THF、Yb(BH)·xTHF,x = 1 或 2、Nd(BH)·1MeS、Nd(BH)·1.5THF、Sm(BH)·1.5THF 和 Yb(BH)·xMeS("x"未指定)。针对每种金属单独优化了合成条件,深入了解了反应性和反应机制方面的问题。反应遵循亲核加成/氢化物转移机制。因此,该反应对离子型和极性共价型金属氢化物最为有效。所提出的合成方法具有广泛的适用性,通过轻松获得大量材料并进行 LiBH 的放大合成得到了证明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验