Niu Tengfei, Liu Yanfeng, Li Jianghua, Koffas Mattheos, Du Guocheng, Alper Hal S, Liu Long
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China.
Key Laboratory of Industrial Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China.
ACS Synth Biol. 2018 Oct 19;7(10):2423-2435. doi: 10.1021/acssynbio.8b00196. Epub 2018 Sep 19.
Bacillus subtilis is a typical industrial microorganism and is widely used in industrial biotechnology, particularly for nutraceutical production. There are many studies on the static metabolic engineering of B. subtilis, whereas there are few reports on dynamic metabolic engineering due to the lack of appropriate elements. Here, we established a dynamic reprogramming strategy for reconstructing metabolic networks in B. subtilis, using a typical nutraceutical, N-acetylglucosamine (GlcNAc), as a model product and the glmS (encoding glucosamine-6-phosphate synthase) ribozyme as an engineering element. First, a trp terminator was introduced to effectively release the glmS ribozyme feedback inhibition. Further, we engineered the native glucosamine-6-phosphate (GlcN6P) responsive glmS ribozyme switch to dynamically control the metabolic flux in B. subtilis for overproduction of GlcNAc. With GlcN6P as a ligand, the native sensor glmS ribozyme is integrated at the 5'- of phosphoglucosamine mutase and 6-phosphofructokinase genes to decrease the flux dynamically toward the peptidoglycan synthesis and glycolysis pathway, respectively. The glmS ribozyme mutant M5 ( glmS ribozyme cleavage site AG → GG) with decreased ribozyme activity is integrated at the 5'- of glucose-6-phosphate isomerase gene to increase the flux dynamically toward the GlcNAc synthesis pathway. This strategy increased the GlcNAc titer from 9.24 to 18.45 g/L, and the specific GlcNAc productivity from 0.53 to 1.21 g GlcNAc/g cell. Since GlcN6P is involved in the biosynthesis of various products, here the developed strategy for multiple target dynamic engineering of metabolic pathways can be generally used in B. subtilis and other industrial microbes for chemical production.
枯草芽孢杆菌是一种典型的工业微生物,广泛应用于工业生物技术领域,尤其用于营养保健品的生产。目前已有许多关于枯草芽孢杆菌静态代谢工程的研究,然而由于缺乏合适的元件,关于动态代谢工程的报道较少。在此,我们建立了一种动态重编程策略,用于在枯草芽孢杆菌中重构代谢网络,以典型的营养保健品N-乙酰葡糖胺(GlcNAc)作为模型产物,并使用glmS(编码葡糖胺-6-磷酸合酶)核酶作为工程元件。首先,引入一个trp终止子以有效解除glmS核酶的反馈抑制。此外,我们对天然的葡糖胺-6-磷酸(GlcN6P)响应性glmS核酶开关进行工程改造,以动态控制枯草芽孢杆菌中的代谢通量,从而过量生产GlcNAc。以GlcN6P作为配体,将天然的传感器glmS核酶分别整合到磷酸葡糖胺变位酶基因和6-磷酸果糖激酶基因的5'端,以分别动态降低通向肽聚糖合成和糖酵解途径的通量。将核酶活性降低的glmS核酶突变体M5(glmS核酶切割位点AG→GG)整合到6-磷酸葡萄糖异构酶基因的5'端,以动态增加通向GlcNAc合成途径的通量。该策略使GlcNAc产量从9.24 g/L提高到18.45 g/L,GlcNAc的比生产率从0.53 g GlcNAc/g细胞提高到1.21 g GlcNAc/g细胞。由于GlcN6P参与多种产物的生物合成,因此这里开发的代谢途径多靶点动态工程策略可普遍应用于枯草芽孢杆菌和其他用于化学品生产的工业微生物。