Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen, Germany.
Section on Experimental Radiology, Eberhard-Karls-University, Tübingen, Germany.
Biomed Res Int. 2018 Jul 24;2018:6180138. doi: 10.1155/2018/6180138. eCollection 2018.
To assess quantitative stenosis grading by color-coded fluoroscopy using an in vitro pulsatile flow phantom.
Three different stenotic tubes (80%, 60%, and 40% diameter restriction) and a nonstenotic reference tube were compared regarding their different flow behavior by using contrast-enhanced fluoroscopy with a flat-detector system for visualisation purposes. Time-density curves (TDC), area under the curve (AUC), time-to-peak (TTP), and different ROI sizes were analyzed in three independent measurements using two different postprocessing software solutions. In addition, exemplary TDCs of a patient with a high-grade stenosis before and after stent angioplasty were acquired.
Color-coded fluoroscopy enabled depiction of differences in AUC and TDC between high-grade (80%), middle (60%), low-grade (40%), and nonstenotic tubes. The best correlation between high-, middle-, and low-grade stenosis was appreciated in ROIs behind the stenosis. This effect was enhanced by using longer integration times (5s, 7s) and a maximum frame rate of image acquisition for analysis (correlation coefficient rho=0.9284 at 5s). TTP showed no significant differences between high- and low-grade stenosis.
Various clinical studies in the literature already demonstrated reproducible and reliable stenosis grading by analyzing TDCs acquired with color-coded fluoroscopy. In contrast to TTP, AUC values derived in ROIs behind the stenosis proved to be reliable parameters for stenosis grading. However, our results also demonstrate that several factors are able to significantly impact the evaluation of AUC values. More precisely, accuracy of acquired AUC values can be improved by choosing longer integration times, a large ROI size adapted to the vessel diameter, and a higher frame rate of image acquisition.
使用体外脉动流体模型评估彩色荧光透视下的定量狭窄分级。
比较三个不同狭窄管(80%、60%和 40%直径限制)和一个非狭窄参考管,使用平板探测器系统进行可视化的对比增强荧光透视,以评估它们不同的流动行为。使用两种不同的后处理软件解决方案,在三个独立的测量中分析了时间密度曲线(TDC)、曲线下面积(AUC)、达峰时间(TTP)和不同 ROI 大小。此外,还获得了一位高分级狭窄患者支架血管成形术前后的示例 TDC。
彩色荧光透视能够显示高分级(80%)、中分级(60%)、低分级(40%)和非狭窄管之间的 AUC 和 TDC 差异。在狭窄后 ROI 中,高、中、低分级狭窄之间的相关性最好。通过使用更长的积分时间(5s、7s)和分析的最大图像采集帧率(5s 时相关系数 rho=0.9284),可以增强这种效果。TTP 在高分级和低分级狭窄之间没有显著差异。
文献中的各种临床研究已经证明,通过分析彩色荧光透视获取的 TDC,可以进行可重复和可靠的狭窄分级。与 TTP 相比,狭窄后 ROI 中得出的 AUC 值被证明是可靠的狭窄分级参数。然而,我们的结果也表明,有几个因素能够显著影响 AUC 值的评估。更准确地说,通过选择更长的积分时间、适应血管直径的大 ROI 大小和更高的图像采集帧率,可以提高获得的 AUC 值的准确性。