Rugg Graham, Genest Alexander, Rösch Notker
Institute of High Performance Computing , Agency for Science, Technology and Research , 1 Fusionopolis Way, #16-16 Connexis , Singapore 138632 , Singapore.
Department Chemie and Catalysis Research Center , Technische Universität München , 85747 Garching , Germany.
J Phys Chem A. 2018 Sep 6;122(35):7042-7050. doi: 10.1021/acs.jpca.8b05331. Epub 2018 Aug 24.
Mixed-metal oxides, e.g., V-Mo and Bi-Mo, are promising selective oxidation catalysts. Yet, their intricate chemical composition and electronic structure often confound DFT methods. This study addresses problems arising from the simultaneous presence of two kinds of transition metals, by probing eight functionals-five hybrid functionals (MN15, M06, PBE0-D3, B3LYP-D3, and TPSSh-D3), the meta-GGA functional M06-L-D3, the range-separated functional ωB97XD, and the GGA functional PBE-D3. We examine the ability of these functionals to localize reducing electrons, and to reproduce reaction energies from CCSD(T) calculations. Accordingly, hybrid functionals containing 20% or more exact exchange perform considerably better in both tests. The B3LYP-D3 approach exhibits the lowest overall mean absolute deviation of reaction energies (OMAD), 21 kJ mol, and gave electron distributions as expected from the local lattice structure according to the pseudo-Jahn-Teller effect. MN15 and PBE0-D3 reproduced the electron distributions, but bore slightly higher OMAD values, at 31 and 32 kJ mol. Despite acceptable OMAD values, M06 (28 kJ mol) and TPSSh (23 kJ mol) in some cases did not yield the expected electron distributions. The range-separated functional ωB97XD experienced the opposite problem, yielding correct electron distributions but a poor OMAD of 41 kJ mol. M06-L-D3 and PBE-D3 performed relatively poorly, regarding the electron distribution and the OMAD values, 39 and 65 kJ mol, respectively.
混合金属氧化物,例如钒 - 钼和铋 - 钼,是很有前景的选择性氧化催化剂。然而,它们复杂的化学成分和电子结构常常使密度泛函理论(DFT)方法感到困惑。本研究通过探究八种泛函——五种杂化泛函(MN15、M06、PBE0-D3、B3LYP-D3和TPSSh-D3)、meta-GGA泛函M06-L-D3、范围分离泛函ωB97XD以及GGA泛函PBE-D3,来解决由两种过渡金属同时存在所产生的问题。我们考察了这些泛函定位还原电子的能力,以及从耦合簇单双激发(CCSD(T))计算中重现反应能量的能力。相应地,含有20%或更多精确交换的杂化泛函在这两项测试中表现得相当好。B3LYP-D3方法表现出最低的反应能量总体平均绝对偏差(OMAD),为21 kJ/mol,并且根据赝 Jahn-Teller 效应给出了与局部晶格结构预期相符的电子分布。MN15和PBE0-D3重现了电子分布,但OMAD值略高,分别为31和32 kJ/mol。尽管OMAD值可以接受,但M06(28 kJ/mol)和TPSSh(23 kJ/mol)在某些情况下并未产生预期的电子分布。范围分离泛函ωB97XD则遇到了相反的问题,产生了正确的电子分布,但OMAD较差,为41 kJ/mol。M06-L-D3和PBE-D3在电子分布和OMAD值方面表现相对较差,分别为39和65 kJ/mol。