Suppr超能文献

基于 EEG 和 MEG 的功能耦合检测的 PSIICOS 投影最优性。

PSIICOS projection optimality for EEG and MEG based functional coupling detection.

机构信息

AIRI, Artificial Intelligence Research Institute, Moscow, Russia.

Center for Bioelectric Interfaces, Higher School of Economics, Moscow, Russia.

出版信息

Neuroimage. 2023 Oct 15;280:120333. doi: 10.1016/j.neuroimage.2023.120333. Epub 2023 Aug 22.

Abstract

Functional connectivity is crucial for cognitive processes in the healthy brain and serves as a marker for a range of neuropathological conditions. Non-invasive exploration of functional coupling using temporally resolved techniques such as MEG allows for a unique opportunity of exploring this fundamental brain mechanism. The indirect nature of MEG measurements complicates the estimation of functional coupling due to the volume conduction and spatial leakage effects. In the previous work (Ossadtchi et al., 2018), we introduced PSIICOS, a method that for the first time allowed us to suppress the volume conduction effect and yet retain information about functional networks whose nodes are coupled with close to zero or zero mutual phase lag. In this paper, we demonstrate analytically that the PSIICOS projection is optimal in achieving a controllable trade-off between suppressing mutual spatial leakage and retaining information about zero- or close to zero-phase coupled networks. We also derive an alternative solution using the regularization-based inverse of the mutual spatial leakage matrix and show its equivalence to the original PSIICOS. We then discuss how PSIICOS solution to the functional connectivity estimation problem can be incorporated into the conventional source estimation framework. Instead of sources, the unknowns are the elementary dyadic networks and their activation time series are formalized by the corresponding source-space cross-spectral coefficients. This view on connectivity estimation as a regression problem opens up new opportunities for formulating a set of principled estimators based on the rich intuition accumulated in the neuroimaging community.

摘要

功能连接对于健康大脑的认知过程至关重要,并且是一系列神经病理学状况的标志物。使用时间分辨技术(如 MEG)无创地探索功能耦合,为探索这一基本大脑机制提供了独特的机会。MEG 测量的间接性质由于容积传导和空间泄漏效应,使得功能耦合的估计变得复杂。在之前的工作(Ossadtchi 等人,2018)中,我们引入了 PSIICOS,这是一种首次允许我们抑制容积传导效应的方法,同时保留了与接近零或零互相滞后的节点耦合的功能网络的信息。在本文中,我们从理论上证明 PSIICOS 投影在抑制互空间泄漏和保留关于零或接近零相位耦合网络的信息之间实现可控制的权衡是最优的。我们还使用基于正则化的互空间泄漏矩阵的逆推导出了另一种解决方案,并证明了它与原始 PSIICOS 的等价性。然后,我们讨论了如何将 PSIICOS 对功能连接估计问题的解决方案纳入传统的源估计框架中。未知的是基本二元网络,而不是源,它们的激活时间序列由相应的源空间互谱系数形式化。将连接估计视为回归问题的观点为基于神经影像学领域积累的丰富直觉来制定一组有原则的估计器开辟了新的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验