Suppr超能文献

蛋白质稳态网络在树突中的稳态作用。

Homeostatic Roles of the Proteostasis Network in Dendrites.

作者信息

Lottes Erin N, Cox Daniel N

机构信息

Neuroscience Institute, Georgia State University, Atlanta, GA, United States.

出版信息

Front Cell Neurosci. 2020 Aug 14;14:264. doi: 10.3389/fncel.2020.00264. eCollection 2020.

Abstract

Cellular protein homeostasis, or proteostasis, is indispensable to the survival and function of all cells. Distinct from other cell types, neurons are long-lived, exhibiting architecturally complex and diverse multipolar projection morphologies that can span great distances. These properties present unique demands on proteostatic machinery to dynamically regulate the neuronal proteome in both space and time. Proteostasis is regulated by a distributed network of cellular processes, the proteostasis network (PN), which ensures precise control of protein synthesis, native conformational folding and maintenance, and protein turnover and degradation, collectively safeguarding proteome integrity both under homeostatic conditions and in the contexts of cellular stress, aging, and disease. Dendrites are equipped with distributed cellular machinery for protein synthesis and turnover, including dendritically trafficked ribosomes, chaperones, and autophagosomes. The PN can be subdivided into an adaptive network of three major functional pathways that synergistically govern protein quality control through the action of (1) protein synthesis machinery; (2) maintenance mechanisms including molecular chaperones involved in protein folding; and (3) degradative pathways (, Ubiquitin-Proteasome System (UPS), endolysosomal pathway, and autophagy. Perturbations in any of the three arms of proteostasis can have dramatic effects on neurons, especially on their dendrites, which require tightly controlled homeostasis for proper development and maintenance. Moreover, the critical importance of the PN as a cell surveillance system against protein dyshomeostasis has been highlighted by extensive work demonstrating that the aggregation and/or failure to clear aggregated proteins figures centrally in many neurological disorders. While these studies demonstrate the relevance of derangements in proteostasis to human neurological disease, here we mainly review recent literature on homeostatic developmental roles the PN machinery plays in the establishment, maintenance, and plasticity of stable and dynamic dendritic arbors. Beyond basic housekeeping functions, we consider roles of PN machinery in protein quality control mechanisms linked to dendritic plasticity (, dendritic spine remodeling during LTP); cell-type specificity; dendritic morphogenesis; and dendritic pruning.

摘要

细胞蛋白质稳态,即蛋白质稳态,对于所有细胞的存活和功能而言必不可少。与其他细胞类型不同,神经元寿命很长,呈现出结构复杂且多样的多极投射形态,其跨度可达很远距离。这些特性对蛋白质稳态机制提出了独特要求,以便在空间和时间上动态调节神经元蛋白质组。蛋白质稳态由一个分布式的细胞过程网络,即蛋白质稳态网络(PN)进行调节,该网络确保对蛋白质合成、天然构象折叠与维持以及蛋白质周转和降解进行精确控制,共同在稳态条件下以及细胞应激、衰老和疾病背景下维护蛋白质组的完整性。树突配备了用于蛋白质合成和周转的分布式细胞机制,包括树突运输的核糖体、伴侣蛋白和自噬体。PN可细分为三个主要功能途径的适应性网络,它们通过以下作用协同控制蛋白质质量:(1)蛋白质合成机制;(2)包括参与蛋白质折叠的分子伴侣在内的维持机制;(3)降解途径(如泛素 - 蛋白酶体系统(UPS)、内溶酶体途径和自噬)。蛋白质稳态的任何一个分支受到干扰都可能对神经元产生显著影响,尤其是对其树突,树突需要严格控制的稳态来实现正常发育和维持。此外,大量研究表明,蛋白质聚集和/或未能清除聚集蛋白在许多神经疾病中占据核心地位,这凸显了PN作为细胞监测系统对抗蛋白质动态失衡的至关重要性。虽然这些研究证明了蛋白质稳态紊乱与人类神经疾病的相关性,但在这里我们主要回顾关于PN机制在稳定和动态树突分支的建立、维持和可塑性方面的稳态发育作用的最新文献。除了基本的看家功能外,我们还考虑PN机制在与树突可塑性(如长时程增强期间的树突棘重塑)、细胞类型特异性、树突形态发生和树突修剪相关的蛋白质质量控制机制中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/279c/7461941/165f35ccc47c/fncel-14-00264-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验