Suppr超能文献

光谱学与马铃薯病害管理的融合。

Integrating Spectroscopy with Potato Disease Management.

机构信息

Department of Forest and Wildlife Ecology.

Department of Plant Pathology.

出版信息

Plant Dis. 2018 Nov;102(11):2233-2240. doi: 10.1094/PDIS-01-18-0054-RE. Epub 2018 Aug 20.

Abstract

Spectral phenotyping is an efficient method for the nondestructive characterization of plant biochemical and physiological status. We examined the ability of a full range (350 to 2,500 nm) of foliar spectral data to (i) detect Potato virus Y (PVY) and physiological effects of the disease in visually asymptomatic leaves, (ii) classify different strains of PVY, and (iii) identify specific potato cultivars. Across cultivars, foliar spectral profiles of PVY-infected leaves were statistically different (F = 96.1, P ≤ 0.001) from noninfected leaves. Partial least-squares discriminate analysis (PLS-DA) accurately classified leaves as PVY infected (validation κ = 0.73) and the shortwave infrared spectral regions displayed the strongest correlations with infection status. Although spectral profiles of different PVY strains were statistically different (F = 6.4, P ≤ 0.001), PLS-DA did not classify different strains well (validation κ = 0.12). Spectroscopic retrievals revealed that PVY infection decreased photosynthetic capacity and increased leaf lignin content. Spectral profiles of potato cultivars also differed (F = 9.2, P ≤ 0.001); whereas average spectral classification was high (validation κ = 0.76), the accuracy of classification varied among cultivars. Our study expands the current knowledge base by (i) identifying disease presence before the onset of visual symptoms, (ii) providing specific biochemical and physiological responses to disease infection, and (iii) discriminating between multiple cultivars within a single plant species.

摘要

光谱特征分析是一种用于无损植物生化和生理状态的有效方法。我们检验了全波段(350 到 2500nm)叶部光谱数据的能力,即:(i)检测马铃薯 Y 病毒(PVY)和无症状叶片中疾病的生理效应;(ii)对不同株系的 PVY 进行分类;(iii)识别特定的马铃薯品种。在不同品种中,受 PVY 感染叶片的叶部光谱谱型在统计学上与未感染叶片有显著差异(F=96.1,P≤0.001)。偏最小二乘判别分析(PLS-DA)准确地将叶片分为感染(验证κ=0.73)和短波红外光谱区域与感染状态相关性最强。尽管不同 PVY 株系的光谱谱型在统计学上有显著差异(F=6.4,P≤0.001),但 PLS-DA 并不能很好地对不同株系进行分类(验证κ=0.12)。光谱反演表明,PVY 感染降低了光合作用能力并增加了叶片木质素含量。马铃薯品种的光谱谱型也存在差异(F=9.2,P≤0.001);尽管平均光谱分类准确率较高(验证κ=0.76),但不同品种的分类准确率存在差异。我们的研究通过(i)在出现可见症状之前确定疾病的存在,(ii)提供对疾病感染的具体生化和生理反应,(iii)在同一植物物种内区分多个品种,扩展了当前的知识库。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验