Schwartz Benjamin L, Chauhan Munish, Sadleir Rosalind J
School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709, USA.
J Appl Phys. 2018 Aug 14;124(6):064701. doi: 10.1063/1.5036659. Epub 2018 Aug 10.
The abdominal ganglion of the is an established model for studying neuroelectric behavior in the presence of an applied electrical current and recently used in studies of magnetic resonance electrical impedance tomography (MREIT) which allows for quantitative visualization of spatially distributed current and magnetic flux densities. Understanding the impact the geometry and anisotropic conductivity have on applied electromagnetic fields is central to intepreting and refining MREIT data and protocols, respectively. Here we present a simplified bidomain model of an experimental preparation of the abdominal ganglion, describing the tissue as a radially anisotropic sphere with equal anisotropy ratios, i.e., where radial conductivities in both intra- and extra-cellular regions are ten times that of their polar and azimuthal conductivities. The fully three dimensional problem is validated through comparisons with limiting examples of 2D isotropic analyses. Results may be useful in validating finite element models of MREIT experiments and have broader relevance to analysis of MREIT data obtained from complex neural architecture in the human brain.
(原文中“of the ”和“experimental preparation of the ”处似乎信息不完整,以下是基于现有内容的翻译)
[某种生物]的腹神经节是研究在施加电流情况下神经电行为的成熟模型,最近被用于磁共振电阻抗断层成像(MREIT)研究,该技术能够对空间分布的电流和磁通密度进行定量可视化。理解[某种生物]的几何形状和各向异性电导率对施加的电磁场的影响,分别是解释和完善MREIT数据及协议的核心。在此,我们展示了一个简化的[某种生物]腹神经节实验制备的双域模型,将组织描述为具有相等各向异性比率的径向各向异性球体,即细胞内和细胞外区域中的径向电导率均为其极向和方位向电导率的十倍。通过与二维各向同性分析的极限示例进行比较,对全三维问题进行了验证。结果可能有助于验证MREIT实验的有限元模型,并且与从人类大脑复杂神经结构获得的MREIT数据的分析具有更广泛的相关性。